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In many modeling contexts, the variables in the model are linear composites of

the raw items measured for each participant; for instance, regression and path

analysis models rely on scale scores, and structural equation models often use

parcels as indicators of latent constructs. Currently, no analytic estimation

method exists to appropriately handle missing data at the item level. Item-level

multiple imputation (MI), however, can handle such missing data straightfor-

wardly. In this article, we develop an analytic approach for dealing with item-

level missing data—that is, one that obtains a unique set of parameter estimates

directly from the incomplete data set and does not require imputations. The

proposed approach is a variant of the two-stage maximum likelihood (TSML)

methodology, and it is the analytic equivalent of item-level MI. We compare the

new TSML approach to three existing alternatives for handling item-level

missing data: scale-level full information maximum likelihood, available-case

maximum likelihood, and item-level MI. We find that the TSML approach is the

best analytic approach, and its performance is similar to item-level MI. We

recommend its implementation in popular software and its further study.

Keywords: item-level missing data; structural equation modeling; two-stage estimation;

multiple imputation

Missing data are common in behavioral research, particularly in studies that

take place over time, take place outside of the lab, or involve collecting a lot of

data from participants. Frequently, the model of interest is one that posits linear

relationships among the variables, such as a regression model, a path analysis

model, or a structural equation model (SEM) with latent variables. It is also a

common occurrence that the model of interest is at the level of composites, that

is, linear combinations of the original variables on which data are collected. For

example, a regression or a path analysis model may involve predicting one scale

score from several other scale scores, where each scale score is computed as a

sum of the individual scale items. Another example is an SEM that uses parcels,
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or sums of several raw items, as indicators of latent factors. Parcels are often

recommended when the sample size is small or the number of indicators per

factor is large (e.g., Little, Rhemtulla, Gibson, & Schoemann, 2013). In this

article, we address the problem of missing data when data are gathered at the

item level but are analyzed at the composite level.

We will assume ignorable missing data at the item level (Little & Rubin,

2002), which means that the probability that an observation is missing does not

depend on the missing values themselves, conditioning on other variables in the

data set. However, even when data are ignorable at the item level, using a

suboptimal method to create the composites from the components can lead to

nonignorable missingness, as discussed later. Software programs that are capable

of fitting SEMs provide two modern ways of dealing with ignorable missing data:

full information maximum likelihood (FIML) estimation (Allison, 2003;

Arbuckle, 1996; Little & Rubin, 2002) and multiple imputation (MI; Rubin,

1987; Schafer, 1997). Studies comparing FIML and MI in the context of SEM

have found the approaches to be largely equivalent, when the number of imputa-

tions is large (Collins, Schafer, & Kam, 2001; Larsen, 2011; Lawrence & Lee,

2014; Yuan, Yang-Wallentin, & Bentler, 2012). The choice between FIML and

MI is thus often a matter of convenience and availability in software. Arguably,

however, SEMs are more easily estimated using FIML. Under the conditions of

multivariate normality, the FIML estimator is also asymptotically efficient, while

MI has this property only if the number of imputations is infinite. However, when

data are gathered at the item level but are analyzed at the composite level, the

FIML estimator is no longer available because the variables containing missing-

ness are not directly in the model.1 Yet, MI at the item level followed by model

fitting to composites is straightforward. Thus, MI appears to have an advantage

in the case of item-level missing data.

The current article develops and studies an alternative, analytic (rather than

MI based) method for item-level missing data: the two-stage maximum like-

lihood (TSML). Much like MI does, the TSML method separates the treatment

of missing data (Stage 1) from the estimation of the model (Stage 2). It uses the

information from Stage 1 in the computation of the standard errors and the model

test statistic in Stage 2 to produce correct inferences that account for missing

data. The TSML approach to missing data has been shown to be promising in

modeling contexts that do not involve composites (Savalei & Bentler, 2009;

Savalei & Falk, 2014). The distinction between Stages 1 and 2 of the TSML

method is analogous to that between the imputation and the analysis stages in MI.

We hypothesize that under the multivariate normal model, the TSML methodol-

ogy will produce a solution largely equivalent to that obtained from item-level

MI based on a large number of imputations.

Other, theoretically suboptimal approaches to treating item-level missing data

exist. Two such approaches, scale-level FIML (SL-FIML) and available-case

maximum likelihood (ACML), are included in the simulation study described
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in this article.2 SL-FIML declares the entire composite as missing whenever any

of its items are missing. This approach can be very inefficient: At the extreme,

SL-FIML may even end up with no data if all participants have left at least 1 item

of each composite incomplete. The analogous scale-level MI procedure has been

shown to perform abysmally relative to item-level MI in terms of efficiency

(Gottschall, West, & Enders, 2012). Worse yet, SL-FIML may not always pro-

duce consistent parameter estimates: If one of the items within the composite is

missing as a function of the value of another item within the same composite,

setting the entire composite as missing creates nonignorable missingness.

ACML computes scale scores by averaging all available items and performing

maximum likelihood (ML) estimation on the resulting data set. Typically, the

resulting data set will be complete, but if it still has missing data (i.e., if some

participants left all items on a scale or composite incomplete), FIML estimation

can be run. Because ACML is equivalent to imputing the person-level item mean

for each missing item score, it too may not always be consistent (Mazza, Enders,

& Ruehlman, 2015; Schafer & Graham, 2002). The ACML method is probably

the default method employed by practitioners when they encounter item-level

missing data.

This article is organized as follows. First, we present the technical details of

the normal theory TSML method’s adaptation for item-level missing data. Next,

we summarize the results of a simulation study comparing the TSML method,

SL-FIML, ACML, and item-level MI in the context of an SEM with parcels. The

simulation study varied sample size, percentage missing data, type of missing

data mechanism, and strength of interitem correlations. We end with limitations

and future directions.

Normal Theory Two-Stage Method for Item-Level Missing Data

The two-stage estimator for incomplete data has been in use for a long time

but as an ad hoc method. In this form, it involved estimating the population

means and covariance matrix from incomplete data under the saturated model

(e.g., via the expectation-maximization (EM) algorithm, Dempster, Laird, &

Rubin, 1977) and then using these estimates in the complete data ML fit function

to fit an SEM (Allison, 2003; Enders & Peugh, 2004; Graham, 2003). This

approach has intuitive appeal because it is easy to understand; however, the

standard errors and the test statistic are incorrect, as they do not incorporate the

uncertainty associated with missing data. Additional corrections are required to

make the method statistically valid. Correct standard errors and test statistics to

accompany the TSML estimator have been developed for both normal and non-

normal data (Cai, 2008; Cai & Lee, 2009; Savalei & Bentler, 2009; Yuan &

Bentler, 2000). These corrections follow the same rationale as the robust correc-

tions developed by Satorra and Bentler (1994), which is essentially an adjustment

for loss of efficiency (see Savalei, 2014). When normality is assumed, the
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resulting standard errors are largely equivalent to those obtained via special

pooling formulas in MI (Asparouhov & Muthén, 2010a, 2010b; Rubin, 1987),

if the number of imputations is sufficiently high. When data are nonnormal,

TSML with appropriate corrections actually outperforms robust FIML (Savalei

& Falk, 2014). The proposed modification of the TSML method to allow item-

level missing data is developed in this article under the assumption of multi-

variate normality; extensions to nonnormal data will be considered in future

work.

In the development below, a scale is any type of unit-weighted3 linear

composite, whether a scale score or a parcel. We illustrate the development for

two scales but also give the corresponding developments for any number of

scales. Let X ¼ ðX1;X2; : : : ;Xp1Þ0 represent the random variables on Scale 1,

and let Y ¼ ðY1; Y2; : : : ; Yp2Þ0 represent the random variables on Scale 2. The

pooled p � 1 vector of variables from both scales is Z ¼ ðX 0; Y 0Þ0, where

p ¼ p1 þ p2. More generally, the p � 1 vector Z contains items from k scales,

where p ¼
Pk
i¼1

pi. Let Xc ¼
P

Xi and Yc ¼
P

Yi represent the corresponding

scale scores. Let Zc ¼ ðXc; YcÞ0. More generally, Zc is k � 1.

Stage 1

In this stage, the saturated model is fit to the original items Z using FIML. The

obtained saturated estimates of means and the covariance matrix, m̂ and Ŝ, are

sometimes called the “EM means” and the “EM” covariance matrix (e.g., Enders

& Peugh, 2004), even though this terminology confuses the type of estimator

with how it was obtained. The ðp� þ pÞ � 1 vector b̂ contains elements of m̂ and

nonredundant elements of Ŝ, that is, b̂
0 ¼ ððvechŜÞ0; m̂0Þ (Magnus & Neudecker,

1999), where p� ¼ :5pðpþ 1Þ. We denote the associated observed information

matrix by Âb, following the notation of Yuan and Bentler (2000), who also gave

an exact asymptotic expression for this matrix when the data are missing com-

pletely at random (MCAR; Little & Rubin, 2002). An explicit asymptotic expres-

sion for Âb when data are missing at random (MAR) was given by Savalei

(2010).4 The estimated asymptotic covariance matrix of b̂ is given by Ôb ¼ Â
�1

b .

Stage 1a

This additional stage does not occur in the typical TSML procedure (e.g.,

Savalei & Bentler, 2009) but is needed for the extension of the method to item-

level missing data. In this stage, the quantities for raw items from Stage 1 are

converted to the corresponding quantities for the scales. To this end, we define a

k � p transformation matrix C such that Zc ¼ CZ. To illustrate, for 2 composites
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and 3 items per composite, this matrix is C ¼ 1 1 1 0 0 0

0 0 0 1 1 1

� �
. The

corresponding saturated estimates of the vector of means and the

covariance matrix of the composite variables Zc are given by m̂c ¼ Cm̂ and

Ŝc ¼ CŜC0. The ðk� þ kÞ � 1 vector of the saturated model parameters is

d̂
0 ¼ ððvechŜcÞ0; m̂0cÞ, where k� ¼ kðk þ 1Þ=2. It is convenient to relate the satu-

rated estimates from Stage 1 to the saturated estimates in Stage 1a:

d̂ ¼ Dþk ðC � CÞDp 0

0 C

� �
b̂ ¼ Cbigb̂, where Cbig is ðk� þ kÞ � ðp� þ pÞ, Dp is

the duplication matrix of order p, and Dþk is the Moore–Penrose inverse of the

duplication matrix of order k (Magnus & Neudecker, 1999). It follows that the

asymptotic covariance matrix of d̂ is related to the asymptotic covariance matrix

of b̂ as follows: Ôd ¼ CbigÔbC0big.

Stage 2

In this stage, the researcher’s model is fit to the saturated estimates of means

and covariance of the composite variables from Stage 1a, Zc. Let the model

representation be mc ¼ mcðyÞ; Sc ¼ ScðyÞ, where mc is the k � 1 vector of pop-

ulation means for the composite variables, Sc is the k � k population covariance

matrix of the composite variables, and y is the q� 1 vector of parameters. The

model is fit to data by minimizing the complete data ML fit function:5

FMLðyÞ ¼ trfŜcS�1
c ðyÞg � logjŜcS�1

c ðyÞj þ ðm̂c � mcðyÞÞ0S�1
c ðyÞðm̂c � mcðyÞÞ � k;

where m̂c and Ŝc replace what would normally be means and covariance matrix

obtained from complete data. The TSML estimates are ~y, and the corresponding

model-reproduced estimates of means and covariances are ~mc ¼ mcð~yÞ and
~Sc ¼ Scð~yÞ, which are placed in a single vector ~d ¼ ððvech~ScÞ0; ~m0cÞ0.

If the software does not implement the TSML approach, the default standard

errors and test statistic from the model run in Stage 2 would be incorrect because

the software does not “know” that the fed-in estimates of means and covariances

were not based on complete data. The correct estimate of the asymptotic covar-

iance matrix of ~y is given by the “sandwich” estimator:

~O~y ¼ ð ~D0 ~H ~DÞ�1 ~D0 ~HÔd ~H ~Dð ~D0 ~H ~DÞ�1; ð1Þ

where ~D ¼ qdðyÞ
qy0 jy¼~y is the matrix of model derivatives evaluated at the TSML

estimates and ~H ¼
:5D0k

~S
�1

c � ~S
�1

c

� �
Dk 0

0 ~S
�1

c

0
@

1
A is the normal theory weight

matrix (the naive “information” matrix) from Stage 2. The quantity ð ~D0 ~H ~DÞ�1
is
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the “naive” covariance matrix of parameter estimates that would be produced by

default by any software running complete-data ML estimation (Yuan & Bentler,

2000). Equation 1 relies on the estimate of the asymptotic covariance matrix Ôd

from Stage 1a to produce the right estimates of variability given missing data.

Correct standard errors for the TSML estimator ~y are obtained from the diagonal

of ~O~y. For completeness (and because such a discussion can be enlightening), the

Appendix discusses what happens when the TSML estimator and Equation 1 are

computed on complete data.

To evaluate model fit under normality, the best two-stage test statistic is the

residual-based statistic of Browne (1984). Savalei and Bentler (2009) found this

statistic to perform very well under normality, and it is the only statistic available

for this situation that has an asymptotic w2 distribution. Defining model residuals

as ~e ¼ d̂� ~d, or the difference between the saturated estimates from Stage 1 and

the model-implied estimates from Stage 2, the residual-based statistic is given

by:

TRES ¼ ðN � 1Þ~e0ðÔ�1

d � Ô
�1

d
~Dð ~D0 Ô

�1

d
~DÞ�1 ~D0 Ô

�1

d Þ~e; ð2Þ

where N is sample size. This statistic is referred to a w2 distribution with

df ¼ ðk� þ kÞ � q degrees of freedom.

Simulation Study: Method

We now summarize the design of a simulation study conducted to evaluate the

performance of the new TSML method for item-level missing data relative to

three other methods for treating item-level missing data: SL-FIML, ACML, and

item-level MI. We hypothesized that TSML and MI would perform similarly,

while SL-FIML and ACML would exhibit loss of efficiency and potentially bias

in some conditions.

Data Generation

Data on 27 variables were generated from a hierarchical factor model with 9

first-order and 3 second-order factors (see Figure 1). This model was adapted

from Coffman and MacCallum (2005), who used it to study the impact of parcel-

ing. Models 1 and 2 had identical structure but differed in the strength of first-

order factor loadings: They were .3, .4, and .5 (.4 on average) in Model 1 and .6,

.7, and .8 (.7 on average) in Model 2. The residual variances were adjusted

accordingly, so that each observed variable would have variance 1.

Data were generated in R from a multivariate normal distribution. Sample sizes

of N ¼ 200, 400, or 600 were drawn. One thousand data sets were created in each

condition. Once complete data sets were created, nine incomplete data sets were

created from each complete data set (for each of the three missingness mechanisms

by three percentages of missing data). Fifteen of the 27 variables were to set to
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have missing data, and the percentage of missing data per variable was set to be

5%, 15%, or 30%. The variables with missing data were divided into six sets, and

the variables within each set were always missing jointly, while missing data

across sets were created independently. Thus, the maximum number of missing

patterns was 26 ¼ 64. The six sets of incomplete variables were fY1, Y5, Y9g,
fY10, Y11g, fY14, Y15, Y16, Y18g, fY20, Y21g, fY22, Y24g, and fY25, Y26g.

Three missing data mechanisms were created: MCAR, MAR linear, and MAR

nonlinear. In the MCAR conditions, for a randomly picked row, missing data

were created on one of the six sets of variables. This procedure was repeated

(with replacement) until the desired percentage of missing data per variable was

reached. In the MAR linear conditions, six complete variables (Y2, Y12, Y13,

Y19, Y23, and Y27) were used to condition the missing values in each of the six

sets of variables. For a randomly picked row, the corresponding set was deleted if

the corresponding conditioning variable was greater than 0. This process was

repeated (with replacement) until the desired percentage of missingness per

variable was reached. In the MAR nonlinear condition, the same procedure was

used except missing data were created if the corresponding conditioning variable

was greater than .67 in absolute value.

Data Analysis

TSML implementation. To implement Stage 1, the saturated model was run on the

full item data using lavaan 0.5-18 (Rosseel, 2012) with FIML estimation. The

parameter vector b̂ and its associated asymptotic covariance matrix Ôb (obtained

using the vcov() function in lavaan) were saved. Stage 1a was implemented using

our own R code6 to obtain m̂c and Ŝc, d̂, and the asymptotic covariance matrix of

d̂. To implement Stage 2, the analysis model (see Figure 2) was fit to m̂c and Ŝc

using complete data ML estimation in lavaan. The sandwich-type standard

errors (Equation 1) and the normal theory residual-based statistic (Equation 2)

Y2

F1

Y1 Y3

F1a

Y5Y4 Y6

F1b

Y8Y7 Y9

F1c
.3 .4 .5 .3 .4 .5 .3 .4 .5

.6 .7
.8

1.0

Y11

F2

Y10 Y12

F2a

Y14Y13 Y15

F2b

Y17Y16 Y18

F2c
.3 .4 .5 .3 .4 .5 .3 .4 .5

.6 .7 .8

Y20

F3

Y19 Y21

F3a

Y23Y22 Y24

F3b

Y26Y25 Y27

F3c
.3 .4 .5 .3 .4 .5 .3 .4 .5

.6
.7 .8

.64 .51 .36 .64 .51 .36 .64 .51 .36

.91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75 .91 .84 .75

.64 .64
6.6.

FIGURE 1. Population Model 1 (used to generate complete data). Model 2 was equivalent

to this except the first-order factor loadings were f.6, .7, .8g instead of f.3, .4, .5g, and the

residual variances were adjusted so that the total variance of each observed variable was

still 1.
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were computed using our own R code, but we relied on lavaan’s internal

computeDelta() function to obtain the matrix of model derivatives ~D necessary

for these computations.

SL-FIML implementation. To implement SL-FIML, the original p variables were

summed into k composite variables. If any value within a composite was missing,

the composite was also set to be missing. The result was an N � k data matrix

with missing values. The analysis model was fit to this data set using FIML

estimation in lavaan. Parameter estimates, standard errors, and the w2 test statis-

tic were extracted from the lavaan output.

ACML implementation. To implement ACML, the original p variables were

again summed into k composite variables, but individual missing cases were first

replaced by the row mean of the remaining complete variables making up the

composite. This method is equivalent to taking the mean of the available data

within each composite and resulted in an N � k data matrix with no missing

values. The analysis model was fit to this data set using the usual complete data

ML estimation in lavaan. Parameter estimates, standard errors, and the w2 test

statistic were extracted from the lavaan output.

MI implementation. The MI procedure involved three steps (imputation, analysis,

and pooling). In the imputation step, m ¼ 20 complete data sets were imputed

using the “norm” method in the R package mice (van Buuren & Groothuis-

Oudshoorn, 2011). The imputation process begins by replacing each missing

value in the data set with a randomly drawn observed value from the same

F1

Y1+Y2+Y3 Y4+Y5+Y6 Y7+Y8+Y9

.72 .84 .96

1.0

F2

Y10+Y11+Y12 Y13+Y14+Y15 Y16+Y17+Y18

F3

Y19+Y20+Y21 Y22+Y23+Y24 Y25+Y26+Y27

.64 .64
6.6.

3.42

.72 .84 .96 .72 .84 .96

3.23 3.02 3.42 3.23 3.02 3.42 3.23 3.02

FIGURE 2. Analysis model (shown with true parameter values for Model 1). Standardized

factor loadings for Model 1 are f.363, .423, .484g for each factor. The corresponding true

parameter values for Model 2 are as follows: factor loadings are f1.26, 1.47, 1.68g for

each factor, residual variances are f4.33, 3.76, 3.10g, and factor variances and regres-

sion coefficients are the same as in Model 1. Standardized factor loading values for Model

2 are f.52, .60, .69g. These values were derived algebraically from the corresponding

values for the components; the derivations were verified empirically by fitting the analysis

model to the population covariance matrices of the composites. The analysis model was fit

with (residual) factor variances fixed to their true values, and all loadings, latent regres-

sion coefficients, and indicator residual variances freely estimated.
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variable to obtain an initial complete data set. Then, a univariate linear regression

model is applied to each variable zi with missing data, such that its missing values

are predicted by the remaining variables in the data set. The univariate imputa-

tion model is _zi ¼ _b0 þ Z~i
_b1 þ _e, where _zi is a vector of imputed scores for those

individuals with missing data on zi; Z~i is the matrix of scores on p � 1 predictor

variables (i.e., all other variables in the data set) for those rows on which zi is

missing; _e*Nð0; _s2Þ; and _b0, _b1, and _s2 are random draws from the full con-

ditional distribution of parameters, given the data (see van Buuren, 2012, for

more detail). This process is repeated for each variable with missing data, until

every missing value has been imputed. The regression imputation procedure is

iterated 20 times,7 with each iteration using the previous iteration’s imputed

values in the predictor matrix, Z~i. The values from the final iteration are saved

as a single set of imputed values. The entire procedure is repeated m ¼ 20 times

to produce 20 imputed data sets.

Each imputed data set was transformed into an N � k matrix of composite

scores. The runMI() function in the semTools R package (Pornprasertmanit,

Miller, Schoemann, & Rosseel, 2014) was used to fit the analysis model to each

imputed data set; this function repeatedly calls lavaan and combines the results

across imputations. Provided that model estimation in Stage 2 converged to a

solution without error messages for at least 3 of the 20 imputed data sets, results

were pooled over the converged solutions; otherwise, the replication was cate-

gorized as a convergence failure and no further analyses were done. Parameter

estimates were averaged across all converged solutions, and standard errors were

combined using Rubin’s rules (Rubin, 1987). Our choice to average essentially

all available imputations is consistent with the defaults in other popular software

(e.g., Mplus; Muthén & Muthén, 1998–2015), but we reasoned that three impu-

tations are the bare minimum for obtaining valid inferences (Schafer, 1997;

Schafer & Olsen, 1998).

To evaluate model fit, the Meng–Rubin pooled w2 was computed using the

semTools package in R; we chose this type of pooled w2 because it is also imple-

mented in Mplus, a popular SEM package (Asparouhov & Muthén, 2010a; Meng

& Rubin, 1992). In this procedure, a log likelihood is computed for each imputed

data set for two fixed-parameter models: an analysis model in which all parameter

estimates are fixed to the average parameter values across all imputations and a

saturated model in which all parameter estimates are fixed to the average saturated

model estimates across all imputations. A likelihood ratio test statistic is computed

for each imputation, and these results are averaged over the imputed data sets. The

w2 pooling procedure converged in all but one of the “eligible” replications (i.e.,

those in which at least 3 of the 20 imputations converged).

Outcome variables. For each analysis method in each condition, the following

measures were collected: convergence and condition code rates, number of
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replications containing outliers, parameter bias, efficiency, confidence interval

coverage, and rejection rates of the associated test statistic.

An outlier was defined as any parameter estimate of type l or b (i.e., a factor

loading or a latent regression coefficient; see Figure 2) that exceeded 10 in

absolute value. Because the inclusion of replications with such large outliers

would significantly skew the results, we opted to exclude replications with out-

liers from the remaining outcome measures. Thus, the results for each method are

based on only those replications that converged and exhibited no outliers.

Raw unstandardized bias is the average deviation of the estimate from the true

value across replications. Bias was computed separately for each model parameter.

For the purposes of presentation, raw bias values were averaged across all para-

meters of the same type (nine factor loadings, two regression coefficients).8 While

the true values of factor loadings were not all equal in the analysis model (see

Figure 2), this summary proved sufficient to draw conclusions about the relative

performance of the studied methods. We omitted residual variances and means

from the comparison, as they are typically not of direct interest in a factor model.

Efficiency was defined as the empirical standard deviation of parameter esti-

mates in each cell of the design. Because the goal of the study was to compare

methods rather than to evaluate the impact of design variables on the efficiency

of any given method, we computed efficiency ratios of SL-FIML, ACML, and

MI relative to TSML by taking ratios of the corresponding empirical standard

deviations. For the purposes of presentation, relative efficiency ratios were aver-

aged across all parameters of the same type.

Coverage of 95% confidence intervals was computed as the number of times

out of 1,000 replications (or out of all converged replications with no outliers)

that a 95% confidence interval constructed around the parameter estimate using

the estimated standard error contained the true value of the parameter. Results

were again averaged across type of parameter. Type I error rates were computed

as the number of times out of 1,000 (or out of all converged replications with no

outliers) that a test statistic produced a p value less than a ¼ :05. Because

excluding replications that failed to converge can bias Type I error rates (e.g.,

Yuan & Marshall, 2004), we also computed Type I error rates including such

replications.

Simulation Study: Results

Convergence Failures

The number of converged replications with no condition codes differed sig-

nificantly by model. Under Model 2 (higher factor loadings), convergence was at

least 99% in all cells. Under Model 1, convergence was high for the two larger

sample sizes (N ¼ 400 and 600), averaging 99.3% and never lower than 96.1%.

At N ¼ 200, average convergence rates were 90.2%, 92.2%, 91.4%, and 97.1%
for SL-FIML, ACML, TSML, and MI, respectively. Convergence rates for all
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methods but MI were lower with higher proportions of missing data and for more

sinister missing data mechanisms, reaching as low as 80.7% (corresponding to

SL-FIML). While convergence was highest for MI, this may be due to our

liberal definition of convergence (requiring only 3 of the 20 imputations to

have converged).

Outliers

As with nonconvergence, outliers were largely limited to Model 1, which

had lower population factor loadings. Under Model 2, the vast majority of cells

had no outliers, and one cell had a single outlier. Under Model 1, replications

with outliers were present in many cells of the design. Most outliers corre-

sponded to latent regression coefficients. Outliers tended to occur more fre-

quently for the larger proportions of missing data and the more difficult missing

data mechanisms. The two ad hoc methods, SL-FIML and ACML, had the

largest numbers of outliers, while TSML and MI had the lowest. At N ¼
200, the average number of outliers across all conditions of Model 1 was 36,

38, 3, and 2 for SL-FIML, ACML, TSML, and MI, respectively. These averages

were under 5 even for the worst performing methods by N ¼ 400, however, and

essentially 0 by N ¼ 600.

Table 1 gives the total number of replications available for the analyses—

converged replications that did not produce any outliers—at the two smallest

sample sizes. This table makes clear that the interpretation of results for Model 1

at N ¼ 200 will be made difficult in some conditions because some methods are

missing a considerable number of replications. In fact, based on Table 1 alone,

TSML is preferred over SL-FIML and ACML, as it is the analytic method that

produces an interpretable solution most often. Table 1 also gives the average

number of converged imputations for MI in the replications used in the analysis

(i.e., excluding those that have produced fewer than three replications). The

number of converged imputations in MI is most affected by sample size and

by the type of missing data mechanism but not by percentage of missing data.

Bias in Parameter Estimates

Raw bias was computed separately for each parameter and then averaged

across the two types of parameters: nine factor loadings and two latent regression

coefficients. Although items in the data generating model had unit variance,

parcels created from these items do not have unit variance (see Figure 2). For

this reason, raw bias cannot be interpreted on a standardized scale, though it can

be used to compare methods.

Factor loadings. There was no bias observed for the MCAR mechanism for any

method: Average bias for factor loadings never exceeded .02 in absolute value in

any of the MCAR conditions. There was no bias observed for the MAR linear

Savalei and Rhemtulla
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mechanism for three of the four methods; average bias for factor loadings never

exceeded .02 in absolute for MI, TSML, and ACML. For SL-FIML, small neg-

ative bias was observed, particularly in the conditions corresponding to 30%
missing data; this bias reached as low as �.08.

Figure 3 plots average bias for factor loadings in the MAR nonlinear

conditions. TSML and MI perform best, exhibiting essentially no bias in all

conditions. When it comes to the two ad hoc methods, ACML exhibits

positive bias, while SL-FIML exhibits negative bias; this bias becomes con-

siderable for greater amounts of missing data and does not decrease with

sample size.
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FIGURE 3. Average bias for factor loading estimates in the missing at random nonlinear

conditions.
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Examining bias for individual factor loadings (not shown) reveals that, within

each model, bias is greater for stronger factor loadings. Additionally, conditions

where no bias is apparent on average also have little bias for any individual

loading (i.e., zero bias is never the result of averaging over positive and negative

bias). Investigating bias by latent factor (not shown) reveals that bias is greater

for factor loadings of indicators of Factor 3, followed by Factor 2, followed by

Factor 1. This finding suggests that the percentage of missing data affects bias

(i.e., Factors 2 and 3 had more indicators with missing data than Factor 1) and

also that a greater number of missing data patterns may lead to more bias (i.e.,

one missingness pattern was imposed on indicators of Factor 1, two patterns

affected Factor 2, and three patterns affected Factor 3).

Latent regression coefficients. Average bias for latent regression coefficients for

Model 1 is plotted in Figure 4. Bias for TSML, ACML, and SL-FIML is similar

in most conditions, increasing with proportion of missing data and decreasing

with sample size. It is generally small and it does not appear to depend on the
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FIGURE 4. Average bias for latent regression coefficient estimates for Model 1.

Normal Theory Two-Stage ML Estimator for Item-Level Missing Data

14



missing mechanism. TSML is almost always the best performing method, while

SL-FIML is frequently the worst of the three. Bias for MI is similar to the

ML-based methods at the largest sample size but is substantially greater at the

two smaller sample sizes, particularly for large amounts of missing data. While

this pattern is interesting, it is likely due to the selection effect, as MI has many

more replications available for analysis in some of these conditions (see Table 1).

To support this explanation, the results for Model 2 (not presented) show neg-

ligible bias for all methods in all conditions, never exceeding .025 in absolute

value. It is also interesting to note that the bias exhibited by ACML and SL-FIML

with factor loadings in the MAR nonlinear conditions (Figure 3) does not appear

to propagate to the latent regression estimates.

Efficiency

When the average relative efficiency ratio is larger than 1, the corresponding

estimator has, on average (across all parameter estimates of the same type), larger

empirical standard deviation than the TSML estimator. When the relative effi-

ciency ratio is less than 1, the corresponding estimator has, on average, smaller

empirical standard deviation than the TSML estimator. In the absence of signif-

icant bias, efficiency ratios also speak to accuracy of estimation.

Factor loadings. Figures 5 and 6 plot average efficiency ratios for factor loadings

for Models 1 and 2, respectively. Because performance is relative to TSML, the

line for TSML is horizontal at 1. We first discuss the performance of the two

theoretically justified methods. For Model 2, TSML and MI perform very simi-

larly in all study conditions, suggesting that these methods are largely equivalent.

For Model 1, TSML and MI exhibit similar performance at the two largest

sample sizes. At N ¼ 200, MI appears to exhibit an efficiency advantage, pro-

ducing estimates that are up to 7% less variable than the corresponding TSML

estimates. These are also the conditions where considerable selection bias occurs,

as MI has quite a few more converged replications (see Table 1). While it is not

clear why this results in higher efficiency for MI, this effect is clearly due to

selection bias, as it is not present in any other conditions.

The two ad hoc methods, ACML and SL-FIML, both have lower efficiency

relative to TSML. The loss of efficiency for SL-FIML follows a fairly constant

pattern across sample sizes and missing data mechanisms, depending primarily

on the amount of missing data. At the highest rate of missing data, the loss of

efficiency for SL-FIML is about 20% under both models. The loss of efficiency

for ACML occurs primarily under Model 1, where it is particularly strong under

the MAR nonlinear mechanism, while also depending on the proportion of miss-

ing data. Interestingly, under Model 2 (with higher factor loadings), ACML

performs much more similarly to TSML and MI. Factor loadings (and thus item

reliabilities and interitem correlations) are higher under Model 2. With

Savalei and Rhemtulla
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increasing factor loadings, the ACML strategy of imputing missing values with

the mean of observed values (i.e., averaging over available indicators) becomes

more valid, as each observed item is a more reliable stand-in for the whole scale.

Latent regression coefficients. Figures 7 and 8 show the average efficiency ratios

for the latent regression coefficients for Models 1 and 2, respectively. For Model 2,

the pattern of results is clear: SL-FIML is inferior, particularly at large proportions

of missing data, while the other three methods perform similarly. The results for

Model 1 are much messier, even at the largest sample size. This is partly due to the

selection bias due to the presence of convergence failures and outliers in many

conditions. Another reason may be the weaker correlations among the variables in

Model 1, so that less information is available in the observed data about the

missing data, and the performance of all methods is thus more variable.

However, two patterns can be noted. First, MI no longer performs similarly or

better than TSML—in fact, it always performs worse, producing empirical stan-

dard errors that can be 20% to 40% larger. Recall that MI estimates were also
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FIGURE 5. Average efficiency ratios for factor loadings for Model 1.
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biased in these conditions, particularly for large amounts of missing data. Sec-

ond, SL-FIML and ACML are also generally less efficient than TSML (though at

N¼ 200, ACML appears to do better), but the specific patterns across conditions

for Model 1 are generally two chaotic to follow.

Coverage

Coverage of 95% confidence intervals is presented in Table 2, averaged across

the three missing data mechanisms and parameters of the same type. For factor

loadings, coverage is generally good in all conditions for all methods, with the

exception of SL-FIML. SL-FIML has low coverage when 30% of data are miss-

ing, although this behavior is largely limited to Model 2, and it is worse in the

MAR nonlinear conditions. In these conditions, the SL-FIML estimates exhibit

large bias (see Figure 3). It is also worth noting that coverage is unreliable to the

degree that there are omitted replications in certain conditions: It is difficult or
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FIGURE 6. Average efficiency ratios for factor loadings for Model 2.
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impossible to know whether the obtained estimates would have covered the true

parameter values or not had those replications converged.

For latent regression coefficients and under Model 2, coverage is excellent in

all conditions and for all four methods, including SL-FIML. This pattern of

results can be understood by noting that bias of SL-FIML estimates was much

lower for regression coefficients than it was for factor loadings. In contrast, high

bias in MI regression coefficients was offset by low efficiency, resulting in

acceptable coverage. For Model 1, coverage is below 93% for several methods,

most notably TSML, in select conditions. These are again the conditions with the

most selection bias (see Table 1). However, average coverage never drops

below 90%.

Type I Errors

Type I error rates at a ¼ .05 are presented in Table 3. Somewhat arbitrarily,

we consider the range of 3.5% to 6.5% acceptable. At N ¼ 600, all methods
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FIGURE 7. Average efficiency ratios for latent regression coefficients for Model 1.
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displayed acceptable Type I error rates, with only one cell falling outside the

acceptable range. At the smallest sample size of N ¼ 200, many more proble-

matic rejection rates were observed, particularly with 30% missing data. MI had

unacceptably high rejection rates under Model 1, and some rejection rates that

were too low under Model 2. SL-FIML and ACML exhibited inflated some

rejection rates under Model 2 only. TSML sometimes exhibited rates that were

too low under Model 2. Overall, TSML was the best performing method.

Discussion

This article described a new analytic ML-based methodology for handling

item-level missing data when the model of interest is based on composites rather

than on raw items. The two-stage (TSML) approach, which separates the treat-

ment of missing data from the estimation of the model, has already been estab-

lished as promising in other missing data contexts (Savalei & Bentler, 2009;

Savalei & Falk, 2014). In this article, the TSML method was developed under
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FIGURE 8. Average efficiency ratios for latent regression coefficients for Model 2.
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the assumption of the multivariate normal distribution for the items. Because in

Stage 1 the TSML methodology uses FIML estimation under the saturated

model, the output of this stage is equivalent to that of item-level MI under the

normal model, at least for a large number of imputations. Prior to the current

development, item-level MI was the only available method to treat item-level

missing data appropriately when fitting a model to composites. The newly devel-

oped TSML method is thus a viable analytic alternative to item-level MI and,

once implemented in software, should be appealing to researchers who prefer

ML-based methods over running MIs.

Prior to conducting the simulation study described in this article, we predicted

that item-level MI and the new TSML method would have increasingly similar

performance in terms of bias, efficiency, and coverage, as sample size grew

large, because they are essentially asymptotically equivalent (for an infinite

number of imputations). This prediction was largely confirmed.

TABLE 2.

Coverage of 95% Confidence Intervals, Averaged Across Missing Data Mechanisms and

Across Type of Parameter

Model 1 Model 2

N %
SL-

FIML ACML TSML MI

SL-

FIML ACML TSML MI

Factor loadings 200 5 95.1 95.1 94.1 94.8 94.1 94.3 94.1 94.1

15 94.9 95.3 93.8 95.8 93.0 94.3 93.8 94.4

30 94.1 95.0 93.2 96.6 89.7 93.9 93.4 95.0

400 5 94.7 94.7 94.0 94.3 94.3 94.6 94.4 94.4

15 94.3 94.6 93.9 94.9 93.1 94.2 94.4 94.6

30 93.7 94.2 94.0 96.0 86.9 93.2 94.0 94.7

600 5 94.6 94.5 94.4 94.4 94.8 94.9 95.0 95.0

15 94.2 94.3 94.1 94.7 92.7 94.6 95.0 95.1

30 93.1 93.8 94.0 95.2 84.8 92.7 94.8 95.2

Latent regression

coefficients

200 5 94.0 93.9 92.7 93.7 94.5 94.5 94.4 94.5

15 92.6 93.1 91.5 94.1 94.3 94.5 94.2 94.6

30 92.3 92.1 90.3 95.3 93.5 94.3 93.5 94.8

400 5 94.0 94.0 93.3 93.6 95.0 94.8 94.5 94.5

15 93.9 93.3 92.7 93.7 95.0 95.2 94.6 94.8

30 92.3 92.2 91.8 94.1 94.7 95.2 94.4 94.7

600 5 94.6 94.2 94.1 94.2 95.5 95.8 95.5 95.5

15 94.2 93.6 94.1 94.5 95.5 95.9 95.4 95.7

30 93.2 93.5 93.1 94.3 94.6 95.8 95.4 95.6

Note. Values below 93% are in bold. Coverage is based on all converged replications with no outliers

and is averaged across each type of parameter estimate and across the missing data mechanisms.

MI ¼ multiple imputation; SL-FIML ¼ scale-level full information maximum likelihood; ACML ¼
available-case maximum likelihood; TSML ¼ two-stage maximum likelihood.
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In addition to TSML and MI, we have included in our simulation study two

other, theoretically suboptimal approaches to treating item-level missing data:

SL-FIML and ACML. These approaches are “ad hoc” in the sense that they can

lack the property of consistency when applied to ignorable item-level missing

data. Even when consistent, they can be very inefficient. SL-FIML, which sets

TABLE 3.

Type I Error Rates at a ¼ .05

Model 1 Model 2

N % Mech SL-FIML ACML TSML MI SL-FIML ACML TSML MI

200 5 MCAR 5.1 4.8 4.2 6.4 6.0 6.7 2.9 4.8

MAR.lin 6.5 5.6 5.0 9.6 5.8 6.8 4.3 3.9

MAR.nl 5.3 3.5 6.3 9.5 6.9 6.7 5.9 2.8

15 MCAR 4.7 4.6 3.6 6.5 6.5 5.9 3.4 4.9

MAR.lin 4.7 5.5 3.6 6.8 6.3 6.2 3.6 4.1

MAR.nl 5.4 4.0 5.6 8.2 7.7 7.2 6.5 3.1

30 MCAR 5.6 4.8 4.0 6.6 6.7 6.3 3.4 4.8

MAR.lin 5.4 5.3 4.5 8.0 6.0 5.7 4.3 4.0

MAR.nl 4.3 6.2 5.9 10.5 7.7 7.2 6.9 2.7

400 5 MCAR 5.8 5.6 4.6 5.3 6.1 6.1 4.6 5.6

MAR.lin 6.2 5.6 5.2 6.0 4.8 6.5 5.4 5.7

MAR.nl 5.6 5.3 5.8 8.5 6.9 5.9 6.9 4.3

15 MCAR 5.3 5.5 5.2 5.6 5.8 6.5 4.8 5.8

MAR.lin 4.7 6.1 5.4 6.2 6.1 5.2 4.3 4.3

MAR.nl 5.6 5.1 5.1 6.1 6.6 5.4 6.0 3.5

30 MCAR 5.0 5.3 4.4 5.5 5.6 6.4 4.9 5.6

MAR.lin 5.9 5.8 4.9 6.0 5.7 6.6 5.7 5.5

MAR.nl 5.0 5.7 5.8 8.3 5.5 5.4 6.2 4.5

600 5 MCAR 5.3 5.6 4.6 5.2 5.3 5.7 4.5 5.5

MAR.lin 5.3 6.2 4.7 5.1 5.0 5.4 4.5 4.5

MAR.nl 5.6 5.1 5.3 4.4 4.7 5.4 5.2 3.9

15 MCAR 5.8 5.5 4.8 5.5 5.4 6.0 5.1 5.3

MAR.lin 5.1 5.2 5.2 5.7 5.6 5.6 4.8 4.2

MAR.nl 5.2 4.9 5.8 6.2 7.4 5.5 5.4 4.4

30 MCAR 4.9 5.0 4.4 5.0 5.4 5.8 4.7 5.2

MAR.lin 4.9 5.6 4.5 5.2 5.5 5.6 5.1 5.1

MAR.nl 5.2 4.2 5.0 5.1 5.3 5.0 5.2 3.6

Note. Values outside of the 3.5–6.5% range are in bold. Type I errors are based on all converged

replications with no outliers. Including replications with outliers does not change the results in any

appreciable way. MI ¼ multiple imputation; MAR ¼ missing at random; MCAR ¼ missing

completely at random; SL-FIML ¼ scale-level full information maximum likelihood; ACML ¼
available-case maximum likelihood; TSML ¼ two-stage maximum likelihood; nl ¼ nonlinear;

lin ¼ linear
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the entire composite to missing if any of its items are missing, exhibited the

largest amount of bias in the present study, particularly with MAR nonlinear

data, as well as the greatest loss of efficiency for all types of missing data.

ACML, in which all available items are averaged to obtain composite scores,

exhibited some bias under the MAR nonlinear mechanism and also exhibited

some loss of efficiency with this type of data.

While our results for SL-FIML and ACML were consistent with our theore-

tical predictions, the results for ACML in particular may seem sufficiently robust

to warrant its continued use by practitioners when they encounter item-level

missing data. In particular, the method had little bias in many of the study’s

conditions as well as good coverage and Type I error rates. We want to stress that

this conclusion would be mistaken. We did not set out to “break” ACML when

designing our study conditions (in fact, the original study design did not include

ACML in the group of methods) but rather to test the empirical performance of

the newly developed TSML approach and to compare it with MI. The good

performance of ACML is likely an artifact of the study design. Items in our

generating model had equal variance and equal means. If items on which miss-

ingness was imposed had different variance or different means than fully

observed items, ACML would result in composites with correspondingly differ-

ent variance or means than the true (unobserved) composite scores and would

thus lose consistency. This would happen even in the MCAR case. For instance,

suppose the item with the highest mean had 50% MCAR missingness, the ACML

composite scores for those 50% of participants would be lower and less variable

than if those scores were not missing; similarly, if the item with the greatest

variance had 50% MCAR missing, the ACML composite scores would have

reduced variance. The ACML and the SL-FIML approaches are not recom-

mended and should be avoided (see also Mazza et al., 2015).

The current study assumed continuous normally distributed data at the item

level. It is fairly straightforward to extend the TSML approach to continuous

nonnormal data (e.g., Savalei & Falk, 2014; Yuan & Bentler, 2000; Yuan & Lu,

2008). The extension to categorical data in Stage 1 is less straightforward, since

analytic methods for treating incomplete categorical data are not yet available.

However, research with complete data suggests that categorical variables can

safely be treated as continuous once the items have five to seven categories

(which is very common in behavioral research) and in some cases as few as four

(Rhemtulla, Brosseau-Liard, & Savalei, 2012). Moreover, studies of imputation

approaches for categorical missing data find that imputation under the normal

model does as well as or better than categorical imputation approaches (Finch,

2010; Wu, Jia, & Enders, 2015)—even for binary and three-category data. The

work of Wu, Jia, and Enders (2015) is particularly relevant as these authors study

MI of categorical items when the model is at the composite level (and composites

are then treated as continuous)—that is, the exact situation the TSML method

was developed for. These authors found that, across all study conditions,
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imputation under the normal model and a state-of-the-art imputation approach

for categorical data called the “latent variable model imputation” approach

(Asparouhov & Muthén, 2010a, 2010b) perform very similarly to each other and

beat all other imputation approaches considered. Recall that imputation under the

normal model has been shown to be largely equivalent to TSML in this article.

While these studies have used simple regression models, the model itself is likely

not relevant, as the goal of imputation is to produce high-quality Stage 1 esti-

mates, to which any subsequent model could be fit. Nonetheless, to test this

conjecture, we plan to compare the TSML approach to categorical imputation

approaches in future research.

One of the study’s limitations is that we evaluated the performance of the

TSML approach on a single type of model, which was a full SEM. In future

studies, we plan to evaluate the TSML approach with other types of models, such

as path analysis and regression models with scale scores—another common

application of composite scores. A limitation of the TSML approach is that it

is currently not available in software, though we make our sample R code avail-

able at osf.io/yx7bf/. In the future, we plan to create an R package that performs

this approach or add this method to an existing package, such as lavaan.

Appendix

Complete Data Special Case

It can be instructive to work through happens when complete data are analyzed

using an incomplete data routine, as the results can differ from the corresponding

complete data analysis. Results that are asymptotically the same may differ in

small samples. For instance, when the FIML estimator is applied to complete

data, the results may not match due to differences in the sample size multiplier

used (some programs use N � 1 for complete data and N for incomplete data),

type of information matrix used (the default in many programs is to use expected

information for complete data and observed information for incomplete data),

whether information matrices are obtained using exact asymptotic formulas or

from the derivatives of the likelihood, and so on. Below we summarize what

happens when the TSML implementation described in this article is applied to

complete data.

When data are complete, the TSML estimates are the same as ML estimates.

The asymptotic covariance matrix of these estimates is given by ðD0HDÞ�1
,

where D and H are the matrix of model derivatives and the normal theory weight

matrix, respectively, both evaluated at the true parameter values. For complete

data, the estimated asymptotic covariance matrix of the TSML estimates given

by Equation 1 reduces to ðD0HDÞ�1
asymptotically because Ôd ! H�1.

However, in finite samples, differences between running the ML routine and

the TSML routine on complete data are possible, due to the fact that the estimate
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Ôd from Stage 1a is not going to be exactly equal to the computation of ~H
�1

from

Stage 2. Stage 1 uses saturated estimates, while Stage 2 uses structured estimates

for the covariance matrix in the expression for ~H
�1

. It is possible to evaluate H at

the saturated estimates in Stage 2, but we did not evaluate this computational

option (with complete data, then, the resulting standard errors will be equivalent

to generalized least squares (GLS) standard errors and not ML standard errors).

Second, Stage 1 uses observed standard errors, since it assumes ignorable miss-

ing data and requires this specification for consistency (Savalei, 2010). Stage 2,

on the other hand, runs the complete data ML routine and therefore uses expected

standard errors. While it is possible to request observed information in Stage 2, in

our informal simulations, we found that expected information works better

because observed information creates confidence intervals that are too wide in

smaller sample sizes.
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Notes

1. The full information maximum likelihood solution at the item level is of

course possible, and the resulting estimates can be transformed to the corre-

sponding estimates for the composites. However, this solution requires the

specification of the correct model for the items, which is typically not what

the researcher interested in the composite-level model wishes to do. Addi-

tionally, it is possible that the composite-level model specified by the

researcher holds, while the proposed full item-level model does not hold, so

the results from such an analysis will answer fundamentally a different

question.

2. Commenters have suggested that there may additionally be a model-based

solution to item-level missing data, that is, a single-stage solution in which

composites are modeled as latent factors, with items as either reflective or

causal indicators with fixed loadings. The causal indicator approach works as

long as composites are exogenous variables in the SEM. With endogenous

composites, however, such models are either not identified (causal indicator

models) or lead to completely different results than the composite-level model

(reflective indicator models).
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3. The incorporation of nonunit weights is straightforward in the proposed

methodology.

4. Structural equation model programs use the second derivatives of the log

likelihood in place of these exact asymptotic expressions, but these computa-

tional differences are typically not consequential, although research is still

needed in this area.

5. Actually, any fit function can be used in Stage 2 of the two-stage method (e.g.,

least squares), with straightforward adjustments to the computations that

follow. However, using complete data ML is likely to produce a more effi-

cient estimator (and, if there is no missing data, an asymptotically fully

efficient estimator).

6. Sample R code is available for download at osf.io/yx7bf/.

7. In the runMI function specification, maxit ¼ 20.

8. Full summary data are available for download at osf.io/yx7bf/.
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