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Fraction of missing information œj is a useful measure of the impact of missing data on the

quality of estimation of a particular parameter. This measure can be computed for all parameters

in the model, and it communicates the relative loss of efficiency in the estimation of a particular

parameter due to missing data. It has been recommended that researchers working with incomplete

data sets routinely report this measure, as it is more informative than percent missing data (Bodner,

2008; Schafer, 1997). However, traditional estimates of œj require the implementation of multiple

imputation (MI). Many researchers prefer to fit structural equation models using full information

maximum likelihood rather than MI. This article demonstrates how to obtain an estimate of œj

using maximum likelihood estimation routines only and argues that this estimate is superior to the

estimate obtained via MI when the number of imputations is small. Interpretation of œj is also

addressed.

Keywords: fraction of missing information, full-information maximum likelihood, incomplete data,

multiple imputation

The two most popular modern approaches to handling missing data in the context of multivariate

techniques such as regression, path analysis, and structural equation modeling (SEM) are full

information maximum likelihood (FIML, also called direct ML) and multiple imputation (MI;
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478 SAVALEI AND RHEMTULLA

Little & Rubin, 2002; Schafer & Graham, 2002). These methods come from somewhat different

traditions and can thus have important differences. For example, MI is usually performed within

the Bayesian paradigm and involves sampling the values to be imputed from the posterior

distributions of parameters. Additionally, MI effectively separates missing data treatment and

data analysis, and can allow for different imputation and analysis models. Despite these

differences, MI and FIML will frequently produce equivalent results (Allison, 2002; Graham,

Olchowski, & Gilreath, 2007). The methods will tend to be equivalent when all of the following

conditions are met: Noninformative priors are used in the MI imputation routine, the imputation

and the analysis models are the same and equal to the data model assumed by FIML, and the

number of imputations is large. Under these conditions, and if the assumed data model is

correct (i.e., the data are multivariate normal), the FIML estimator is asymptotically fully

efficient, whereas the MI estimator is only fully efficient when the number of imputations is

infinite. Thus, unless one is in possession of strong prior information to conduct a Bayesian

analysis, FIML is expected to produce better results.1

Even though MI is several decades old (Rubin, 1987), historically SEM researchers have

tended to favor the FIML approach to missing data (Arbuckle, 1996; Jamshidian & Bentler,

1999; Muthén, Kaplan, & Hollis, 1987). This approach remains the only available modern

missing data method in many SEM programs, although some, such as Mplus (Muthén &

Muthén, 2010), now implement both FIML and MI. Thus, the choice between FIML and MI

is frequently made not on the basis of a theoretical preference for one method or the other,

but on the basis of the availability of one or the other method in the program of choice. It is

important, therefore, that researchers are familiar with how to obtain important missing data

diagnostics via either method.

In this article, we show how to obtain an estimate of fraction of missing information for

the jth model parameter, or œj , from the output of an SEM program that employs FIML

rather than MI. Fraction of missing information, not to be confused with proportion of missing

data, is an important diagnostic that communicates how much the estimation of a particular

parameter is affected by nonresponse (Allison, 2002; Longford, 2005; Rubin, 1987). More

specifically, it measures the inflation in the variance of the parameter estimate relative to what

this variance would have been had all the data been observed. The concept of fraction of

missing information is particularly important in MI because the relative efficiency of the MI

estimator to the FIML estimator is determined by the quantity .1 C œj =M/�1, where M is the

number of imputations. An estimate of œj can therefore be useful in determining how many

imputations are needed to achieve reasonable relative efficiency (Allison, 2002; Rubin, 1987;

von Hippel, 2005).

Several authors have also suggested that œj is important in its own right as a diagnostic of

the impact of missing data on estimation (Bodner, 2008; Davey, Savla, & Luo, 2005; Schafer,

1997), and should routinely be reported along with the analyses. In most scenarios, œj is a

complicated function of the univariate and bivariate proportions of missing data, the specific

nature of the missing data mechanism, the size of the correlations among the variables, and

the chosen model parameterization. Thus, estimates of œj can serve as useful missing data

diagnostics that capture the impact of missing data on estimation in the context of a particular

1Other Bayesian approaches to incomplete data in the context of SEM are possible (Lee, 2007; Song & Lee, 2002).
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model of interest. It might be that a lot of data are missing, yet the estimation of a regression

coefficient of interest, for example, is relatively unaffected. On the other hand, it could be

that relatively few missing data values result in a large loss of efficiency in the estimation

of the same regression coefficient. The measure œj communicates this loss of efficiency

directly.

Some confusion exists in the applied literature on missing data as to whether estimates

of œj can be obtained without MI. There are two reasons for this confusion: (a) published

equations for œj usually involve MI-obtained variance components, creating the impression

that the concept of fraction of missing information is unique to MI; and (b) programs that

perform FIML do not typically report estimates of œj for parameters by default, whereas

programs that perform MI frequently do. Some authors discuss œj in a way that suggests it is

unique to MI. For instance, Schafer (2001) writes:

Finally, an important advantage of multiple imputation over direct maximum likelihood is that

it singles out missing data as a source of random variation distinct from ordinary sampling

variability: : : : This partition immediately yields an estimated rate of missing information, which

can be quite helpful for assessing the impact of missing data on inferences for any parameter of

interest. (p. 361)

In a recent book on missing data, McKnight, McKnight, Sidani, and Figueredo (2007) wrote,

“One of the advantages of MI is that it allows us to estimate the amount of missing information,

or statistical uncertainty, resulting from our missing data. All other missing data handling

procedures tell us only the amount of missing data” (p. 207). In fact, the concept of fraction

of missing information originated in the development of the missing information principle

(Orchard & Woodbury, 1972), which is grounded in likelihood theory, and obtaining estimates

of œj from ML routines is in this sense more natural.

Curiously, although in the context of MI analyses the estimates of œj are computed and

evaluated to ensure that a sufficient number of imputations have been used, these estimates

themselves can be less than precisely estimated when the number of imputations is small.

Bodner (2008) recently showed that the number of imputations necessary to produce reliable

estimates of œj is higher than the number of imputations typically needed for the main analyses.

To demonstrate this, Bodner used the cholesterol data set also analyzed by Ryan and Joiner

(1994) and by Schafer (1997), containing a measure of cholesterol level at three time points

after myocardial infarction for 28 patients. He found that the estimate of œj varied widely

when the number of imputations was 3 to 10, which is the commonly recommended number

(Rubin, 1987), and continued to display high variability even when the number of imputations

was as high as 50 or 100. He concluded that “the minimum ms to achieve greater precision

[in the estimate of œj ] can be prohibitive” (p. 670). Yet, as the number of imputations goes

to infinity, under the conditions outlined earlier, MI estimates converge to FIML estimates,

and estimated standard errors from both methods are also asymptotically equivalent. Thus, an

alternative to running hundreds of imputations to obtain estimates of œj is to obtain these

estimates via FIML, as is illustrated in this article. For the cholesterol data set, Bodner (2008)

reported that œj for the mean of the third time point, estimated from 800 imputations, was .19.

Our FIML estimate is .18. Thus, obtaining FIML estimates of œj can be useful even when MI

is preferred for the main analyses.
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In this article, we first summarize the missing information principle that gave rise to the

concept of fraction of missing information; we then provide the definition of fraction of missing

information for individual parameters based on concepts from likelihood theory; we review

the equivalent definition in MI terms; and we outline a simple procedure to obtain estimates

of œj from an SEM program capable of running FIML estimation. We present an example

illustrating the details of the proposed procedure in Mplus (Muthén & Muthén, 2010), EQS

(Bentler, 2008), and an R package for SEM called lavaan 0.4-14 (Rosseel, 2011, 2012). Using

the same example, we also demonstrate the equivalence of the new FIML-based estimates of

œj to the MI-based estimates based on a large number of imputations.

THE MISSING INFORMATION PRINCIPLE

In statistics, the concept of information refers to the amount of information available for

inference about a particular parameter. The information available for inference is inversely

related to the size of the standard error of the corresponding parameter estimate: The larger

the standard error, the less we know about the parameter’s true value. Orchard and Woodbury

(1972) introduced the missing information principle, which states that information available

from an incomplete data set is equal to complete information minus missing information. This

idea allows us to conceptually define the fraction of missing information as the ratio of missing

information to complete information.

The missing information principle is grounded in likelihood theory, and thus requires

familiarity with maximum likelihood (ML) estimation. Let xi be a set of scores for person

i on p measures. It can be viewed as consisting of two components, xi D .y0
i ; z0

i /
0, where

yi and zi represent observed and missing scores, respectively. Viewing x as a vector random

variable across people, the classic factorization of the density function for x that enables

modern missing data analyses is f .xj™/ D f1.yj™/f2.zj™; y/ (Little & Rubin, 2002; Orchard

& Woodbury, 1972). That is, the density for the variables of interest x can be viewed as the

product of the marginal density of the observed components y and the conditional density of

the missing components z given the observed components (Dempster, Laird, & Rubin, 1977;

Orchard & Woodbury, 1972). It follows that the likelihood function for a sample of size n can

similarly be factored as follows:

L.™jX/ D L1.™jY /f2.ZjY; ™/; (1)

where X , Y , and Z represent all of the complete, observed, and missing data for n observations,

respectively. Equation 1 states that the likelihood of the complete data is equal to the likelihood

of observed data times the conditional density of the missing data given observed data.

From Equation 1, it follows that the score vector, or the derivative of the log-likelihood, is

then partitioned as follows:

@ log L.™jX/

@™0
D @ log L1.™jY /

@™0
C @ log f2.ZjY; ™/

@™0
(2)

The information matrix can be defined as either the negative expected value of the second

derivative of the log-likelihood or as the covariance matrix of the score vector (Rao, 2002).
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Following the second definition, the information about the parameters ™ that would be available

from complete data is the covariance of the left side in Equation 2: JX D cov.
@ log L.™jX/

@™0 /. The

information about ™ that would be available from observed data is the covariance matrix of

the first term on the right side of Equation 2: JY D cov. @ log L1.™jY /

@™0
/. Additional information

about ™ that would be available from missing data, over and above information contained in

the observed data, is the covariance matrix of the second term on the right side of Equation

2: JX jY D JZjY D cov.
@ log f2.ZjY;™/

@™0 /. One can write JX jY D JZjY because the information

available in the complete data over and above the information in observed data is the same

as the missing information. If missing data have nothing to add to the estimation of ™, this

quantity would consist of zeros. The missing information principle of Orchard and Woodbury

(1972) can then be stated in equation form as follows:

JX D JY C JX jY : (3)

It states that complete information is the sum of observed information and missing information

(for proof, see Little & Rubin, 2002; Orchard & Woodbury, 1972). Equation 3 implies that

JX � JY ; that is, that the amount of information about ™ contained in complete data is greater

than or equal to the information about ™ contained in incomplete data.2

If all of the data had been observed, then Y D X and Z is null, and the ML parameter

estimates, which we call O™ML, would be obtained by maximizing the complete data likelihood

function L.™jX/. In this case, and under standard regularity conditions, the asymptotic distri-

bution of O™ML is normal with a covariance matrix equal to the inverse of the corresponding

complete data information matrix:

a cov.
p

nO™ML/ D J �1
X

(Rao, 2002). If the data are incomplete, the corresponding ML (also called FIML) estimates,

which we call O™FIML, would be obtained by maximizing the incomplete data likelihood function

L1.™jY /, which produces consistent estimates as long as the missing data mechanism is either

missing completely at random (MCAR) or missing at random (MAR; Little & Rubin, 2002).

The asymptotic distribution of O™FIML is normal with a covariance matrix equal to the inverse

of the corresponding incomplete data information matrix,

a cov.
p

nO™FIML/ D J �1
Y :

From Equation 3, J �1
X � J �1

Y , and in particular, the diagonal elements of J �1
Y are larger

than the diagonal elements of J �1
X , implying that standard errors are larger when the data are

incomplete. This is rather intuitive: To the extent that missing data contains useful information

about ™, incomplete data contains less information about ™ and more uncertainty exists around

estimated parameters. This uncertainty manifests itself in greater variability of O™FIML relative

to O™ML.

2The notation indicating that one matrix is “greater” than the other is used here in the standard sense that their differ-

ence is nonnegative definite.
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FRACTIONS OF MISSING INFORMATION (œj )

The missing information principle makes clear that the relative decrease (loss of information)

in the size of the components of JY relative to the corresponding components of JX captures

the extent to which missing data affect the quality of parameter estimates. When the data

are missing, an estimate of JY , the incomplete data information matrix, can be obtained either

analytically or numerically. When data are missing, it is also possible to obtain an estimate of JX

(using either MI or ML procedures, as we show later), which indicates how much information

would have been contained in the data if there were no missing values. Thus, estimates of both

JX and JY can be computed from the data and their relative size evaluated. Global measures

of missing information exist that take into account the entire structure of the two information

matrices (Savalei & Rhemtulla, 2011); for example, the largest eigenvalue of the matrix product

JX jY J �1
X D I � JY J �1

X has been termed the largest fraction of missing information3 (Rubin,

1987). However, global measures are difficult to interpret, and methodologists have instead

advised practitioners to report estimates of the fraction of missing information for individual

parameters (Bodner, 2008; Davey et al., 2005; Enders, 2010; Schafer, 1997), defined next.

The diagonal elements of J �1
X and J �1

Y contain parameter estimates’ variances when these

estimates are obtained from complete and incomplete data, respectively. The definition of

fraction of missing information for a given parameter ™j is

œj D 1 � fJ �1
X gjj

fJ �1
Y gjj

D 1 �
SE2

j;C

SE2
j;O

; (4)

where SEj;C is the asymptotic standard error of O™j;ML, the ML estimate of ™j based on

complete data, and SEj;O is the asymptotic standard error of the FIML estimate O™j;FIML based

on incomplete data. Thus, œj represents the relative loss of efficiency in the estimate of ™j due

to incomplete data.

When ™ contains a single parameter, Equation 4 can be written directly as the ratio of

incomplete to complete information: œ D 1 � JY

JX
D 1 � SE

2
C

SE
2
O

, because in this case JY and JX

are scalars and their inverses are just reciprocals. This equation is given in some textbooks (e.g.,

Longford, 2005, p. 55), but one should be careful not to generalize it to problems involving

multiple parameters. When JY and JX are matrices, œj ¤ 1 � fJY gjj

fJX gjj
, in general, unless the

parameter estimates are uncorrelated. Equation 4 must be used to define fractions of missing

information per parameter in the multiparameter case, which requires that the information

matrices be inverted prior to taking the ratio of the diagonal elements.

ESTIMATING œj VIA MULTIPLE IMPUTATION

The previous section defined fraction of missing information using concepts from likelihood

theory. However, estimates of œj s are typically obtained as by-products of MI. The connection

between this computation and the theoretical definition in Equation 4 might not be obvious.

3This number actually captures the worst œj for any linear combination of the parameters (e.g., Fraley, 1999).
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Before we proceed to define FIML-based estimates of œj , we briefly review the MI computation

and point out that it also estimates Equation 4.

In MI, M complete data sets are created from the incomplete data and the results are

averaged across the data sets to obtain parameter estimates and standard errors (Rubin, 1987;

Schafer, 1997). The subsequent analysis typically relies on Bayesian arguments, but under

the conditions listed in the introduction, the results obtained from MI become increasingly

similar to FIML as the number of imputations increases (Allison, 2002; Graham et al., 2007).

Furthermore, even when informative priors are used, the MI and FIML approaches become

equivalent when, additionally, the sample size N ! 1, by the well-known principle that the

data overwhelm the prior.

The MI estimate of ™j is obtained by pooling complete data estimates across M imputations:
O™MI;M D 1

M

PM
mD1

O™m, where O™m is the parameter estimate obtained from the mth imputed

data set (parameter subscript j is omitted here for readability). The standard error for O™MI;M

is obtained by combining within- and between-imputation variance. The within-imputation

variance is the average of the squared complete data standard error estimates Osm across the M

imputations: Os2
MI;M D 1

M

PM
mD1 Os2

m. Intuitively, Os2
MI;M is an estimate of what the variance of the

parameter estimate would be if there were no missing data. The between-imputation variance

is the variance of the parameter estimates O™m across imputations: OBMI;M D 1
M�1

PM
mD1.O™m �

O™MI;M /2. This quantity will be larger to the extent that more information about the parameter

is lost due to missing data. Then, the estimated total variance of O™MI;M is a combination of

the within- and between-imputation variance: cSE
2
.O™MI;M / D OTMI;M D Os2

MI;M C MC1
M

OBMI;M �
Os2

MI;M C OBMI;M , where the latter approximation holds when M is large (Rubin, 1987; Schafer,

1997). At the limit (when M D 1), OTMI;1 D Os2
MI;1 C OBMI;1.

The definition of fraction of missing information for the j th parameter involving variance

components from multiple imputation is as follows:

œj D Bj

s2
j C Bj

D 1 �
s2

j

Tj

; (5)

where T D s2 C B are the limits of the preceding variance components as N ! 1 and M !
1. Conceptually, it is between-imputation variance over total variance. A sample estimate of

this quantity is given by Schafer and Graham (2002):

Oœj;M D
M C 1

M
OBMI;M

Os2
MI;M C M C 1

M
OBMI;M

�
OBMI;M

Os2
MI;M C OBMI;M

; (6)

where the latter approximation works when the number of imputations is large. Other sample

estimates exist, which involve a numerator correction that depends on the degrees of freedom

for a t distribution that is the posterior distribution of O™MI;M (Schafer, 1997, Equation 4.30).

We do not state this more complicated sample definition here because it becomes equivalent

to Equation 6 as M ! 1.

We have used the same notation, œj , in the population definitions in Equations 4 and 5

because these quantities are in fact the same, when MI is done under the same assumptions
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as FIML (as listed earlier). The total asymptotic variance Tj is the same as the asymptotic

variance of O™FIML, Tj D SE2
j;O . The variance had the data been complete, s2

j , is the same as

the asymptotic variance of O™ML, the complete data estimator, s2
j D SE2

j;C . Finally, the between-

imputations variance component Bj is the “amount of missing information.” The equivalence

of the asymptotic variance components from MI and the corresponding quantities involved in

the missing information principle from likelihood theory was pointed out by Rubin (1987).

We showed earlier that the MI and the likelihood-based population definitions in Equations

4 and 5 are equivalent. The population definitions can be interpreted as describing the situation

when M ! 1 and N ! 1. When N is finite but M ! 1, the MI estimator based on

infinitely many imputations will converge to the FIML estimator, O™MI;1 ! O™FIML. The total vari-

ance OTMI;1 also approaches the FIML-estimated variance of O™FIML. In fact, when M D 1, the

MI estimate of fraction of missing information Oœj;1 D OBMI;1

Os2
MI;1C OBMI;1

is equivalent to the FIML-

based estimate OœML;j that we are about to propose. But this FIML estimate is much easier to ob-

tain than the MI-based estimate Oœj;1 because it does not require running a huge number of MIs.

AN ESTIMATE OF œj VIA FIML

The population definition of fraction of missing information given in Equation 4 suggests that an

estimate of œj for each parameter can be computed from the output of any computer program

capable of running complete and incomplete data ML (FIML) estimation. This procedure

does not seem to be known in the applied literature. Briefly, it involves running the SEM

program twice: once using the FIML routine on the original incomplete data set, and once using

the complete-data ML routine on the model-implied covariance matrix and vector of means

obtained from the FIML run. One minus the ratio of the corresponding squared standard errors

from each output forms an estimate of œj defined by Equation 4. We label this estimate Oœj;ML.

The details of the procedure are now given, specific to three programs: EQS, Mplus, and the R

package lavaan.4 Any other program capable of running ML and FIML can in principle be used.

Step 1

Fit the model to the original incomplete data set using FIML. Observed information should be

requested to obtain consistent estimates of information for MAR data (Kenward, Lesaffre, &

Molenberghs, 1994; Kenward & Molenberghs, 1998; Savalei, 2010; Schafer & Graham, 2002).

The assumption of MCAR is almost never tenable unless missingness is planned (Graham,

2009; Little, 1988). Observed information is the default in Mplus, EQS,5 and lavaan when

FIML is requested. Sample syntax for all three programs is given in the Appendix. For each

parameter of interest, obtain its estimated standard error from the output, cSEj;O .

4The method for obtaining FMI estimates described in this paper will be implemented as a command in lavaan

before the end of 2012; for details, please see lavaan.org.
5The default is observed information in EQS only when the model is built using EQS Model Builder, and ML is

requested to treat missing data. When raw syntax is created, the user must specify SEDOBSERVED or SEDEXACT

for numeric or analytic raw second derivatives, respectively. Omitting the SE command will default to Fisher standard

errors.
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Step 2

From the output in Step 1, take the model-implied covariance matrix, O†, and mean vector,

O�. In EQS, this output is requested by specifying COVDYES under the /PRINT command,

as illustrated in the sample syntax in the Appendix. Figure 1a shows what this matrix looks

like in the output file. For large models, it might be desirable to save these estimates in a

file instead; the alternate syntax is also shown in the Appendix. The estimates O� and O† can

be requested by specifying OUTPUT: residual, as shown in the Appendix. Figure 1b shows

what this output looks like in the output file. For large models, estimates O† (but not O�) can be

saved in a data file using the SAVEDATA command, as shown in the Appendix. In lavaan, the

command fitted.values() produces the model-implied means and covariances, as shown in the

Appendix. Most other SEM software packages have options for obtaining the model-implied

means and covariance matrix, either as part of the output or in a separate data file.

It is worth noting that when the mean structure is saturated (e.g., if the model is a con-

firmatory factor model), the model-implied means O� are equal to the “saturated ML” mean

estimates, which are typically printed in the output by default. If the entire model is saturated

(e.g., if the model is a regression model), O� and O† are equal to the “saturated ML” mean

and covariance matrix estimates typically printed in the output, also known as the EM means

and covariances (Enders & Peugh, 2004; Graham, 2003). In this case, these quantities can be

copied directly from the output files.

Step 3

Run the same model as in Step 1 using the FIML estimates of the model-implied means and

covariance matrix O� and O† from Step 2 as input into the complete data ML routine. The sample

size should be equal to the original sample size (i.e., the total number of cases, regardless of

whether they have incomplete data). For each parameter, obtain its estimated standard error

from the output, cSEj;C . It is worth noting that some programs (in particular, Mplus and the

default setting in lavaan) assume that a user-provided covariance matrix is scaled by N � 1

rather than N . This difference is of little consequence; however, if the sample size is small

(e.g., N < 100), one could adjust for it by multiplying the input matrix O† by N=N � 1 before

running Step 3. For the best comparison across programs, we apply this adjustment to the

computations in Mplus (the adjusted Mplus input file is shown in Figure 2) and in lavaan (see

code in the Appendix).

Step 4

Compute Oœj;ML according to Equation 4, for each parameter of interest.

EXAMPLE

We now provide an empirical example that illustrates this procedure. To verify the asymptotic

equivalence of our procedure and the MI procedure, we also compare the estimates Oœj;ML in

this example to estimates obtained via MI with 50,000 imputations.
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(a) EQS Output

MODEL COVARIANCE MATRIX FOR MEASURED AND LATENT VARIABLES

MATH1 MATH2 MATH3 MATH4 V999
V1 V2 V3 V4 V999

MATH1 V1 1.281
MATH2 V2 0.793 1.513
MATH3 V3 0.691 0.815 1.364
MATH4 V4 0.678 0.800 0.697 1.462
V999 V999 2.301 2.153 2.068 2.109 1.000
F1 F1 0.820 0.967 0.843 0.827 0.000

F1
F1

F1 F1 1.000

(b) Mplus Output

Model Estimated Covariances/Correlations/Residual Correlations
MATH1 MATH2 MATH3 MATH4
_______ ________ ________ ________

MATH1 1.280
MATH2 0.813 1.510
MATH3 0.689 0.810 1.368
MATH4 0.685 0.805 0.682 1.468

Model Estimated Means/Intercepts/Thresholds
MATH1 MATH2 MATH3 MATH4
________ ________ ________ ________

1 2.301 2.155 2.065 2.111

FIGURE 1 Model covariance matrix in EQS and Mplus output for Example 2. Model-estimated means in

EQS (a) are the first four values in the row labeled V999.

2.301 2.155 2.065 2.111

1.280
0.813 1.510
0.689 0.810 1.368
0.685 0.805 0.682 1.468

FIGURE 2 Contents of means and covariance matrix file to read in to Mplus for complete data routine in

Example 2, ‘math.model.dat.’ The first line of numbers is obtained by taking the model-implied means from

the Mplus output file in Step 1; the next four lines are obtained by taking the model-implied covariance matrix

from the same output file (see Figure 1b). If the sample size is small .N < 100/, one can multiply the elements

in the last four lines by .N=N � 1/ for slightly better estimates. This file should be saved as a .dat file.
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The data set is a subsample of N D 500 cases from the public use portion of the National

Longitudinal Study of Adolescent Health data set (Harris, 2009). This study followed a large

sample of adolescents for 4 years, measuring a wide range of psychological, social, behavioral,

and contextual variables, with the goal of predicting health outcomes. We used four variables

corresponding to math grades in the four consecutive years of the study (we call these math1 to

math4) to illustrate the four-step procedure for Oœj;ML calculations. Missingness was present on

all four variables, and as is typical with longitudinal data, the amount of missing data increased

over time. Six cases had missingness on all four variables; thus, the effective sample size was

N D 494. In addition, there were about 2% missing data on math1, 7% missing on math2,

16% missing on math3, and 40% missing on math4. Forty-five percent of cases had missing

data on at least one variable, and there were 10 missing data patterns. We fit a one-factor

confirmatory factor analysis (CFA) model to the data. The variance of the factor was fixed to

one for identification; the parameters estimated were four intercepts, four factor loadings, and

four error variances.

We followed Steps 1 through 4 given earlier in three SEM software programs: EQS, Mplus,

and lavaan. The syntax for each of these programs is given in the Appendix. Standard errors

from Steps 1 and 3 and the Oœj estimates for the intercepts and loadings of the first and

fourth time points (i.e., math1 and math4) are presented in the first three columns of Table 1.

Estimates across software matched within .01. Slight differences are likely due to different

computational approaches to obtained observed information matrices with incomplete data, as

well as to varying defaults for type of information with complete data.

TABLE 1

Fraction of Missing Information Estimates for Selected Parameters for the Example

FIML MI

Parameter Estimate EQS Mplus lavaan Mplus

math1 cSEj;O .05129 .05123 .05123 .05124

Intercept cSEj;C .05097 .05091 .05091 .05092
Oœj .01260 .01241 .01241 .01268

math4 cSEj;O .06577 .06588 .06588 .06603

Intercept cSEj;C .05446 .05452 .05452 .05449

Oœj .31423 .31506 .31506 .31899

math1 cSEj;O .05108 .05026 .05026 .05099

Loading cSEj;C .04844 .04813 .04813 .04840

Oœj .10080 .08321 .08321 .09908

math4 cSEj;O .06537 .06574 .06574 .06601

Loading cSEj;C .05255 .05261 .05261 .05256

Oœj .35380 .35948 .35948 .36608

Note. FIML D full information maximum likelihood; MI D multiple imputation based on 50,000 imputations.
cSEj;O D standard error estimate taking into account missing data; cSEj;C D standard error estimate assuming complete
data; Oœj D estimate of fraction of missing information. The model is a four-indicator confirmatory factor analysis
with math grade point average (GPA) measured at four time points: math1 is math GPA at the first time point; math4

is math GPA at the fourth time point. Values from Mplus and lavaan have adjusted cSEj;C to use the multiplier N �1,

for better comparison across programs and methods.
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To confirm that the estimates of fraction of missing information obtained from multiple

imputation, Oœj;M , are equivalent to the FIML-based estimates Oœj;ML when the number of

imputations is large, we used Mplus to perform multiple imputation with M D 50,000 on

the same data set. The quantities Oœj;M were computed using the large-M approximation in

Equation 6. The results are presented in the last column of Table 1. The MI estimates based

on a large M are within about .01 of the FIML estimates.

INTERPRETATION OF œj

We now make a few comments about the interpretation of œj . In statistics, the relative efficiency

of an estimator as compared to some standard, typically to a fully efficient estimator, is defined

as the ratio of the respective variances. If this ratio is 1, we would say that the estimator is

100% efficient; if this ratio is .98, we would say that a particular estimator is 98% efficient.

For example, the sample median has 64% efficiency relative to the sample mean in large

samples. Relative efficiencies are frequently used to compare estimators in simulation studies

(e.g., Savalei & Bentler, 2009). Equation 4 reveals that œj is one minus the relative efficiency,

and thus can be interpreted as the loss of efficiency in the estimation of a particular parameter

as a result of missing data.6 When the data are complete, œj D 0, and the incomplete data

estimator is 100% efficient relative to what it would have been had the data been complete.

When the data contain zero information about a parameter (e.g., if the parameter is a covariance

but the two variables have no jointly observed cases), œj D 1. We can interpret any other value

of the fraction of missing information; for example, if œj D 0:2, then the loss of efficiency

due to incomplete data is 2%, or equivalently, the incomplete data estimator is 98% efficient

relative to what it would have been with complete data.

Another approach to interpreting œj is to relate it to the relative inflation of the width of the

confidence interval that results from incomplete data. First, most directly, we can define the

effective sample size N �
j as N �

j D N.1�œj /. This is the sample size that would have achieved

the same efficiency for the jth parameter with complete data. For instance, the intercept for

math4 in Table 1 is based on the effective size N �
j D 494.1 � :31506/ � 338 (using values

from Mplus), which means that its variability is as high as it would have been had it been

based on a complete data set with only 338 cases instead of 494. In this sense, œj reflects

loss of statistical power due to missing data. Equivalently, one could define target sample size

as N �
j D N=.1 � œj /, which communicates how much larger the sample size would have

to be to fully account for incomplete data as it affects the jth parameter. In the preceding

example, N �
j D 494=.1 � :31506/ � 721, which means that to achieve the same efficiency in

the estimation of the jth parameter as one would have had with complete data, it would require

721 cases with incomplete data!

A second way to relate œj to the relative inflation of the width of the confidence interval

is to define the width inflation factor, as follows: WIFj D 1p
1�œj

D SEj;O

SEj;C
. The relationship

between WIFj and œj is illustrated in Figure 3. When œj D :56, the confidence interval for

the j th parameter is 1.5 times wider than what it would have been had the data been complete.

6To be more precise, we are actually talking about asymptotic efficiency here.
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FIGURE 3 The relationship between fraction of missing information œ and the confidence interval width

inflation factor (WIF), which is the ratio of the standard error for incomplete data over the standard error for

complete data. Values corresponding to 50% inflation (WIF D 1.5) and 100% inflation (WIF D 2) are shown.

When œj D :75, the confidence interval is 2 times wider. In small to moderate sample sizes,

œj > :55 for any parameter of interest could present a cause for concern, particularly if the

estimated parameter is not significant. Lack of significant results in this case can potentially

be explained by missing data. Notice that the function in Figure 3 increases very quickly for

higher values of œj , but also that for œj � :2 the inflation is very small and probably harmless

except for very weak effects. To emphasize, this analysis applies to small to medium sample

sizes only. If, for example, one has a longitudinal data set based on 5,000 cases and with

large amounts of missing data, it is quite likely that FIML estimation will be successful and

parameters of interest will be significant, even if œj D :8 for some parameters. In general,

because the actual value of œj for any given parameter depends on multiple factors, the rough

guidelines provided earlier to aid in its interpretation should not be misinterpreted as strict

cutoff values. We instead recommend treating œj as an effect size measure of the impact on

missing data on the estimation of the jth parameter.

Although the preceding discussion centered on parameter estimates, SEM model test statis-

tics will also be adversely affected by missing data and will have reduced power to detect

misspecification. Global measures of missing information that can succinctly summarize the

extent of this effect are the subject of future research.

Finally, we briefly discuss characteristics of the data and the model affecting œj . As the ex-

ample illustrates (see Table 1), œj can be lower than the rate of missing data for the cor-

responding variable; for instance, œj D :32 for the intercept of math4, but math4 has 40%
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missing values. However, œj can also be higher than the rate of missing data. With MCAR data,

the values of œj will be bounded by the largest rates of univariate and pairwise missingness, and

will vary based on the model parameterization and intercorrelations among variables. However,

with MAR data, œj can be significantly higher than the rate of missing data. For instance, if the

data set has two variables (X1 and X2), and X2 is missing 20% of its values either randomly

(MCAR) or corresponding to the highest values of X1 (MAR), the corresponding œj s for

intercept and slope when X2 is predicted from X1 are both .2 when the data are MCAR,

but are .34 and .53, respectively, when the data are MAR (Savalei & Rhemtulla, 2011). In

other words, the regression parameters, and particularly the slope, are estimated with much

less precision when the data are MAR. The relationship between œj and the intercorrelations

among the variables is more complicated and depends on the precise parameterization of the

model. These relationships will be explored in future research.

DISCUSSION

Fraction of missing information is a useful concept in missing data analysis because it quantifies

how much a particular parameter estimate has been affected by missing data. This quantity

is quite different from the proportion of missing data per variable, as it also depends on the

type of missing data mechanism, the model parameterization, and the degree of interrelationship

among the variables. The fraction of missing information can differ from parameter to parameter

in the same data set; for example, estimates of a factor loading might be more affected by

certain types of missing data than estimates of an intercept. It would be excellent practice for

researchers to compute and report fraction of missing data for each parameter (Bodner, 2008;

Enders, 2010; Schafer, 1997). Such a practice would allow researchers to begin to gauge the

effect that missingness has on their analyses, and could inform future research design. If it is

known, for example, that estimation of a particular key parameter is highly affected by missing

data, researchers could make efforts to collect more data to inform its estimation.

Bodner (2008) found that the number of imputations in an MI analysis might have to

be prohibitively large to achieve accurate estimates of fraction of missing information. To

avoid doing hundreds of imputations, Bodner suggested that researchers could obtain a crude

conservative estimate of œj by simply computing the proportion of cases in the entire sample on

which there is missingness on any variable related to the parameter of interest. This conservative

estimate could then be used to estimate the number of imputations required to obtain acceptable

parameter and standard error estimates (i.e., by consulting his Table 3). Harel (2007) derived

a standard error of the MI estimate of œj with respect to the number of imputations to better

evaluate how variable the MI estimate is given a certain number of imputations.

In this article, we have shown that a single FIML analysis followed by a complete data

analysis based on the FIML-estimated model-implied means and covariance matrix results in

nearly identical estimates of œj to those based on 50,000 imputations. These estimates can

be obtained from any SEM program capable of performing ML estimation with complete

and incomplete data. Thus, the method presented here directly addresses the concerns raised

by Bodner (2008) with regard to the quality of MI-based estimates of fraction of missing

information based on small M , and obviates the need for confidence intervals to evaluate

the impact of small M . Accurate estimates of œj are in fact readily available. Furthermore, it
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would be straightforward for the developers of SEM software to automate their computation, so

that estimates of fraction of missing information per parameter are printed whenever FIML is

requested. This would encourage the use and reporting of these estimates by applied researchers,

as well as further study of their properties by methodologists.
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APPENDIX

SYNTAX FOR EXAMPLE 2

EQS Syntax for Step 1 (FIML)

/TITLE

Add Health Math Example, FIML

/SPECIFICATIONS

DATA=’math.dat’; VARIABLES = 4; CASES = 500;

METHOD=ML; ANALYSIS=MOMENT; MISSING=ML; SE=EXACT; MATRIX=RAW;

/LABELS

V1=MATH1; V2=MATH2; V3=MATH3; V4=MATH4;

/EQUATIONS

V1 = *V999 + *F1 + E1;
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V2 = *V999 + *F1 + E2;

V3 = *V999 + *F1 + E3;

V4 = *V999 + *F1 + E4;

/VARIANCES

F1 = 1;

E1 TO E4 = *;

/PRINT

COV=YES; !this command requests the model-implied cov matrix and means

!to be printed in the output

/OUTPUT

data="modelcovmeans.ets"; SI; !This command saves Sigma, the model-

!implied cov matrix (and means) in a separate datafile that can be

!opened in EQS (this is not necessary unless more significant

!digits are desired). This file will contain other information in

!addition to the saved means and covariance matrix, and will thus

!have to be edited before it can be used as an input data file.

!Please see EQS manual for details

/END

EQS Syntax for Step 3 (Complete Data Routine)

/TITLE

Add Health Math Example, complete data routine

/SPECIFICATIONS

VARIABLES= 4; CASES= 494; MATRIX=COV;

!A datafile containing the covariance matrix and means can be specified

!here instead to replace /MEANS and /MATRIX sections below

METHOD=ML; ANALYSIS=MOMENT;

/EQUATIONS

V1 = *V999 + *F1 + E1;

V2 = *V999 + *F1 + E2;

V3 = *V999 + *F1 + E3;

V4 = *V999 + *F1 + E4;

/VARIANCES

F1 = 1;

E1 TO E4 = *;

/MATRIX !the model-implied cov matrix from the FIML run

1.2806817

0.7926411 1.5128352

0.6910960 0.8153024 1.3636522

0.6780093 0.7998636 0.6973933 1.4623119

/MEANS !the model-implied means from the FIML run

2.3012734 2.1533217 2.0676202 2.1092750

/END

Mplus Syntax for Step 1 (FIML)

TITLE: math example, 1-factor, FIML

DATA: FILE IS "mplus.math.dat";

VARIABLE: NAMES ARE MATH1 MATH2 MATH3 MATH4;

MISSING ARE ALL (-9999);

ANALYSIS: ESTIMATOR = ML;
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ALGORITHM = EM;

MODEL:

F1 BY MATH1* MATH2 MATH3 MATH4;

F1@1;

OUTPUT: RESIDUAL; !this command requests model-implied means and

!covariances to be printed in the .out file

!SAVEDATA: COVARIANCE IS ’modelcov.dat’; ! this command saves the

!model-implied covariance-matrix; it is redundant with

!above command but can be used if more significant

!digits are desired

Mplus Syntax for Step 3 (Complete Data Routine)

TITLE: math example, 1-factor, read in model-implied cov, treat as complete data.

DATA: FILE IS "math.model.dat"; !see Figure 2

TYPE IS COVARIANCE MEANS;

NOBSERVATIONS = 494;

VARIABLE: NAMES ARE MATH1 MATH2 MATH3 MATH4;

ANALYSIS: ESTIMATOR = ML;

MODEL:

F1 BY MATH1* MATH2 MATH3 MATH4;

F1@1;

R Syntax (Using lavaan Package) for Steps 1 and 3
(FIML and Complete Data Routine)

library(lavaan)

math <- read.table("math.dat", na.strings = "NA")

colnames(math) <- c("MATH1", "MATH2", "MATH3", "MATH4")

#set up model

math.cfa <- ’math =~ MATH1 + MATH2 + MATH3 + MATH4’

step1.cfa <- cfa(math.cfa, data = math, missing = "fiml", std.lv = TRUE)

#save model standard errors

SE.cfa <- parameterEstimates(fit.cfa)$se

#get model-implied covariance matrix and means

cov.cfa <- fitted.values(step1.cfa)\$cov

means.cfa <- fitted.values(step1.cfa)\$mean

#multiply model-implied cov by N/N-1

#note that this is optional and perhaps only worth doing with small N

cov.cfa <- cov.cfa*(494/493)

#run the model using model-implied cov. matrix and means as input

step2.cfa <- cfa(math.cfa, sample.cov = cov.cfa, sample.mean =

means.cfa, sample.nobs = 494, std.lv = TRUE,

meanstructure = TRUE, information = "observed")

#get standard errors

SE.step2.cfa <- parameterEstimates(step2.cfa)$se

#compute vector of fraction of missing information estimates

FMI <- 1-(SE.step2.cfa^2/SE.cfa^2)


