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This paper reports on a simulation study that evaluated the performance of five
structural equation model test statistics appropriate for categorical data. Both Type I
error rate and power were investigated. Different model sizes, sample sizes, numbers of
categories, and threshold distributions were considered. Statistics associated with both
the diagonally weighted least squares (cat-DWLS) estimator and with the unweighted
least squares (cat-ULS) estimator were studied. Recent research suggests that cat-
ULS parameter estimates and robust standard errors slightly outperform cat-DWLS
estimates and robust standard errors (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009).
The findings of the present research suggest that the mean- and variance-adjusted test
statistic associated with the cat-ULS estimator performs best overall. A new version
of this statistic now exists that does not require a degrees-of-freedom adjustment
(Asparouhov & Muthén, 2010), and this statistic is recommended. Overall, the cat-ULS
estimator is recommended over cat-DWLS, particularly in small to medium sample
sizes.

1. Introduction
Structural equation modelling is a popular data modelling tool in many areas of the
social and behavioural sciences. Among the most popular types of structural equation
model are confirmatory factor analysis (CFA) models, which traditionally hypothesize
a set of linear relationships between the observed indicator variables and the latent
factors. However, when data are categorical, linear relationships between the observed
categorical indicators and continuous latent factors are no longer possible. Instead,
categorical CFA analysis assumes that there is a continuous latent variable underlying
each observed categorical variable. The linear CFA model is then assumed to connect
these underlying continuous indicators and the latent factors.

A popular class of approaches for fitting categorical CFA models are the so-called
limited information methods (e.g., Maydeu-Olivares & Joe, 2005), which fit the model
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only to the univariate and bivariate frequencies of the observed categorical data.
Several such approaches exist. One method is first to estimate variables’ thresholds
and the matrix of polychoric correlations, and then to fit the CFA model to this matrix
(Christoffersson, 1975; Jöreskog, 1994; Olsson, 1979; Muthén, 1978, 1984, 1993; Lee,
Poon, & Bentler, 1990, 1995). This method is implemented, for example, in Mplus 6.11
(Muthén & Muthén, 2010). The polychoric correlation matrix is computed under the
assumption of multivariate normality of the underlying continuous indicators.

The three best-known limited information methods for categorical data are weighted
least squares (cat-WLS), unweighted least squares (cat-ULS), and diagonally weighted
least squares (cat-DWLS), which use different fit functions to fit the CFA model to the
polychoric correlation matrix. All three of these approaches minimize a fit function that is
a weighted sum of model residuals, that is, differences between polychoric correlations
and model-estimated correlations. They differ in the weight matrix used. The oldest
approach, cat-WLS, uses the inverse of the estimated covariance matrix of polychoric
correlations as the weight matrix (e.g., Muthén, 1978, 1984). This method produces
correct standard error estimates without any special corrections and an asymptotically
chi-square distributed model test statistic (when the model is true). The method is not
often used because it tends to be unstable and to produce biased results unless the
sample size is very large (DiStefano, 2002; Dolan, 1994; Flora & Curran, 2004; Hoogland
& Boomsma, 1998; Lei, 2009; Maydeu-Olivares, 2001; Potthast, 1993; Yang-Wallentin,
Jöreskog, & Luo, 2010).

The two methods that perform best in small and medium samples are cat-ULS and cat-
DWLS. Cat-ULS simply minimizes the sum of squared model residuals; that is, it uses the
identity matrix as the weight matrix. Cat-DWLS uses a diagonal weight matrix, where the
diagonal elements prior to inverting are obtained from the estimated covariance matrix of
polychoric correlations. Recent evidence suggests that cat-ULS and cat-DWLS parameter
estimates perform very similarly (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Yang-
Wallentin et al., 2010), with cat-ULS performing slightly better. The default standard
errors associated with cat-ULS and cat-DWLS are not correct and require corrections.
So-called robust or sandwich standard errors can be computed for each method. The
relative performance of these robust standard errors in terms of coverage is also very
similar, with cat-ULS robust standard errors outperforming slightly (Forero et al., 2009).
Because the finding that cat-ULS may be preferred over cat-DLWS is relatively new,
cat-DWLS remains the most common method of analysis among practitioners.

This paper is concerned with model test statistics for categorical data. The default
model test statistics associated with cat-ULS and cat-DWLS are also incorrect and require
adjustments. Several robust test statistics can in principle be computed for each method;
in practice, researchers’ choices are limited by the options available in the popular
software. In this paper, we used Mplus 6.11, which offers the following options. A mean-
and variance-adjusted chi-square is available for both cat-ULS and cat-DWLS estimators
(activated, respectively, by ESTIMATOR: ULSMV and WLSMV), and a mean-corrected
chi-square is available for cat-DWLS (activated by ESTIMATOR: WLSM), but not for
cat-ULS. In addition, two slightly different computations of the mean- and variance-
adjusted chi-square are available. Technical details for all these statistics are provided in
Section 2.

While a few studies exist that compare the cat-ULS and cat-DWLS estimators and their
associated robust standard errors, no study, to our knowledge, has comprehensively
compared both mean- and mean- and variance-adjusted robust test statistics across these
two categorical estimators. The goal of the present study is to compare all categorical
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data test statistics available in Mplus for cat-ULS and cat-DWLS estimators, in terms of both
Type I error and power. Of interest are both the comparison of different test statistics
within an estimator, and the comparison of the same type of statistic across estimators.
The latter comparison may present a reason to prefer one estimation method over the
other.

2. Robust test statistics for cat-ULS and cat-DWLS
Let y be a p × 1 vector of categorical variables with k categories, and let y∗ be the p × 1
vector of the underlying continuous normally distributed variables with mean 0 and
variance 1. Let �1, . . . , �k−1 be the thresholds used to categorize y∗ into y. Let � be the
1
2 p(p − 1) × 1 vector of population correlations among the variables y∗. Categorical CFA
models assume that this vector is structured according to the model � = �(�), where �
is the vector of q parameters that includes loadings and factor correlations.

Let r be the 1
2 p(p − 1) × 1 vector of polychoric correlations estimated from the ob-

served categorical data. Assuming a saturated threshold structure, the cat-ULS parameter
estimates �̂LS are obtained by minimizing the fit function FULS = (r − �(�))′(r − �(�)).
Cat-DWLS parameter estimates �̂DWLS are obtained by minimizing the fit function
FDWLS = (r − �(�))′ D̂−1(r − �(�)), where D̂ = diag(V̂ ) is a diagonal matrix, and V̂ is
an estimate of the asymptotic covariance matrix of r, the vector of polychoric corre-
lations. The default or ‘näıve’ test statistics are given by TULS = (N − 1)FULS(�̂ULS) and
TDWLS = (N − 1)FDWLS(�̂DWLS) for cat-ULS and cat-DWLS, respectively. These statistics
are not valid for inference, as neither is asymptotically chi-square distributed when
the model is true. Some programs, such as Mplus, no longer even print their values.
Robust corrections to these statistics have been developed that adjust the test statistics
to approximately follow a chi-square distribution.

The following five robust statistics are studied in this paper: TDWLS−M (the mean-
adjusted statistic based on the cat-DWLS estimator). TDWLS−MV1 and TDWLS−MV2 (the
original and new versions of the mean- and variance-adjusted statistics based on the
cat-DWLS estimator), and TULS−MV1 and TULS−MV2 (the original and new versions of the
mean- and variance-adjusted statistics based on the cat-ULS estimator). These are now
defined.

The mean-adjusted statistic based on the cat-DWLS estimator is given by:

TDWLS−M = df

tr(ÛDWLSV̂ )
TDWLS, (1)

where df = 1
2 p(p − 1) − q, ÛDWLS = D̂−1 − D̂−1�̂DWLS(�̂′

DWLS D̂−1�̂DWLS)−1�̂′
DWLS D̂−1,

and

�̂DWLS = ∂�(�)

∂�′

∣∣∣∣
�̂DWLS

is the 1
2 (p − 1)p × q matrix of model derivatives (Satorra & Bentler, 1994; Muthén, 1993).

This statistic is analogous to the so-called Satorra–Bentler scaled chi-square that is popular
for continuous data. It is referred to a chi-square distribution with df degrees of freedom,
� 2

df , although this is only its approximate asymptotic distribution. The distribution of
TDWLS−M matches � 2

df in the mean; for this reason equation (1) is known as a first-order



4 Victoria Savalei and Mijke Rhemtulla

adjustment. In principle the corresponding statistic for the ULS estimator, TULS−M, could
also be defined, but this statistic is not printed by Mplus, thus precluding its study. Yang-
Wallentin et al. (2010) compared the LISREL implementations of TDWLS−M and TULS−M in
samples of size 400 and greater, and found their rejection rates to be nearly identical.

With categorical data, the mean- and variance-adjusted statistics appear to perform
better than mean-adjusted statistics in small samples (Maydeu-Olivares, 2001; Muthén,
du Toit, & Spisic, 1997). The original mean- and variance-adjusted statistic based on the
categorical DWLS estimator is defined as follows:

TDWLS−MV1 = kDWLS

tr(ÛDWLSV̂ )
TDWLS, (2)

which is referred to a chi-square distribution with the new adjusted degrees of freedom
kDWLS, where

kDWLS ≈ [tr(ÛDWLSV̂ )]2

tr(ÛDWLSV̂ ÛDWLSV̂ )
,

rounded to the nearest integer. The distribution of TDWLS−MV1 matches � 2
kDWLS

in the mean
and the variance, and equation (2) provides a second-order adjustment. Equations (1)
and (2) differ only in that the degrees of freedom in the numerator of (2) are redefined.
The original mean- and variance-adjusted statistic based on the categorical ULS estimator
is similar and is defined as follows:

TULS−MV1 = kULS

tr(ÛULSV̂ )
TULS, (3)

where ÛULS = I − �̂ULS(�̂′
ULS�̂ULS)−1�̂′

ULS,

�̂ULS = ∂�(�)

∂�′

∣∣∣∣
�̂ULS

, and kULS ≈ [tr(ÛULSV̂ )]2

tr(ÛULSV̂ ÛULSV̂ )
,

rounded to the nearest integer. This statistic is referred to a chi-square distribution with
degrees of freedom kULS.

The adjustment of the degrees of freedom in the statistics TDWLS−MV1 and TULS−MV1

may be viewed as problematic. Researchers are used to thinking of degrees of freedom
as the difference between the number of data points in the covariance or correlation
matrix and the number of model parameters. Using these statistics may mean that the
same model is referred to different degrees of freedom when estimated on different data
sets. It may also mean that the test statistic has different degrees of freedom depending
on the estimation method used – that is, kULS and kDWLS may be different when computed
on the same data set. Recently, Asparouhov and Muthén (2010) proposed a different way
to implement a second-order adjustment, one that does not change the model’s degrees
of freedom. Under this approach, the new mean- and variance-adjusted statistic based
on the cat-DWLS estimator is computed as follows:

TDWLS−MV2 = aDWLSTDWLS − bDWLS, (4)
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where

aDWLS =
√

df

tr(ÛDWLSV̂ ÛDWLSV̂ )

and bDWLS = df − aDWLStr(ÛDWLSV̂ ). Similarly, the new mean- and variance-adjusted
statistic based on the cat-ULS estimator is computed as follows:

TULS−MV2 = aULSTULS − bULS, (5)

where

aLS =
√

df

tr(ÛULSV̂ ÛULSV̂ )

and bULS = df − aULStr(ÛULSV̂ ). The distribution of both statistics can be approximated
by a � 2

df distribution in both the mean and the variance. In a small simulation study,
Asparouhov and Muthén (2010) found that Type I error rates for the cat-DWLS statistics
(2) and (4) were extremely similar, with the new statistic TDWLS−MV2 having slightly
higher (typically less than 1%) rejection rates than the old statistic TDWLS−MV1. The relative
performance of the cat-ULS statistics (3) and (5) has not, to our knowledge, ever been
evaluated.

3. Literature review
Several studies have evaluated the performance of cat-DWLS and/or cat-ULS with ordinal
data, typically with either two or five categories. Both methods typically produce
unbiased parameter estimates (Beauducel & Herzberg, 2006; Dolan, 1994; Flora &
Curran, 2004; Forero et al., 2009; Lei, 2009; Muthén et al., 1997; Nussbeck, Eid, &
Lischetzke, 2006; Rigdon & Ferguson, 1991; Yang-Wallentin et al., 2010). Very little bias
has also been found in robust standard errors associated with either cat-DWLS or cat-ULS
(Flora & Curran, 2004; Forero et al., 2009; Lei, 2009; Maydeu-Olivares, 2001; Nussbeck
et al., 2006; Yang-Wallentin et al., 2010). Studies that have compared the two methods
to each other have either reported no difference (Yang-Wallentin et al., 2010) or a slight
advantage of cat-ULS over cat-DWLS (Forero et al., 2009; Maydeu-Olivares, 2001), in
terms of both parameter estimates and robust standard errors.

When it comes to robust test statistics, which are the focus of the present paper, the
literature is sparse. Yang-Wallentin et al. (2010) compared the performance of mean-
adjusted cat-ULS and cat-DWLS statistics and found their Type I error rates to be both
acceptable (near 5%) and similar to each other. However, only data for sample sizes
greater than 400 were reported. Maydeu-Olivares (2001) compared the performance of
the mean-adjusted and the mean- and variance-adjusted statistics associated with both
cat-ULS and cat-DWLS methods in a small simulation study using very small models
(either four or seven observed variables), data that had either 2 or 5 categories, and
sample sizes of N = 100 or N = 300. He found that the mean- and variance-adjusted
statistic outperformed the mean-adjusted statistic at N = 100 for both methods, and the
performance of the two types of statistics was similar at N = 300. Cat-ULS and cat-DWLS
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versions of the statistics performed very similarly. Several studies have found that the
mean- and variance-adjusted statistic based on the cat-DWLS estimator performs well
with 2- and 5-category data in samples of N = 200 or greater (Flora & Curran, 2004; Lei,
2009; Nussbeck et al., 2006; Muthén et al., 1997).

In summary, cat-ULS and cat-DWLS parameter estimates and standard errors have been
found to perform similarly, with cat-ULS performing slightly better. Small differences
make it difficult to recommend one method over the other. Cat-DWLS is the most
popular choice among applied researchers. However, because cat-ULS does appear to
have a slight advantage, some authors have advocated its use (Forero et al., 2009).
This recommendation is incomplete without a thorough investigation of the relative
performance of the corresponding robust test statistics, which has not been conducted.
The current study aims to fill this gap in the literature and to provide such a comparison.

4. Method
A Monte Carlo simulation study was conducted to compare the performance of the five
cat-ULS and cat-DWLS test statistics with categorical data. Normally distributed data were
generated from a two-factor CFA model with either 5 or 10 indicators per factor. Factor
loadings for each factor were .3, .4, .5, .6, and .7; when the factor had 10 indicators,
these loadings repeated. These values have been used in previous simulation studies
(e.g., Beauducel & Herzberg, 2006; DiStefano, 2002; Flora & Curran, 2004). The factor
correlation was set to .3. The variances of all observed and latent variables were set to 1.
The data were then categorized to create ordinal variables. The following four variables
were varied: model size (p = 10 or p = 20); number of categories (2–7); threshold
type (symmetry; moderate asymmetry I, moderate asymmetry II, extreme asymmetry I,
extreme asymmetry II, defined in Section 4.3); and sample size (N = 100, 150, 350, 600).
The study had a total of 240 conditions, with 1,000 data sets generated per condition.1

The four manipulated variables are now discussed in more detail.

4.1. Model size
Model 1 was a two-factor CFA model with 5 indicators per factor, for a total of 10
indicators. Model 2 was identical to model 1, but with 10 indicators per factor, for a total
of 20 indicators. Model 1 had 34 degrees of freedom, while model 2 had 169 degrees
of freedom. Note that for model 2, the degrees of freedom are greater than the two
smallest studied sample sizes, and the behaviour of the test statistics may be particularly
interesting in these conditions (e.g., Yuan & Bentler, 1998; Savalei, 2010).

4.2. Number of categories
Previous research that has compared cat-ULS and cat-DWLS statistics studied data with 2
and 5 categories (Maydeu-Olivares, 2001), or with 2, 5, and 7 categories (Yang-Wallentin
et al., 2010). To better understand the effect of the number of categories on rejection

1The simulated data used in this study were a subset of the data generated by Rhemtulla, Brosseau-Liard, and
Savalei (2012), who studied the relative performance of continuous and categorical data methods, but only
examined one categorical estimator (cat-ULS) and one test statistic (TULS−MV1).
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rates of the test statistics, continuous latent response distributions were categorized into
2, 3, 4, 5, 6, or 7 categories.

4.3. Threshold type
Previous research has found that thresholds that were distributed asymmetrically around
0 led to less accurate cat-DWLS parameter estimates (Babakus, Ferguson, & Jöreskog,
1987; DiStefano, 2002; Dolan, 1994; Lei, 2009; Rigdon & Ferguson, 1991), and that highly
asymmetric thresholds (e.g., 2-category data where more than 90% of the distribution fell
into one category) resulted in biased robust standard errors for cat-DWLS, and to a lesser
extent cat-ULS (Forero et al., 2009). When it comes to the effect of threshold asymmetry
on test statistics, Lei (2009) found that threshold asymmetry led to higher Type I error
rates for cat-DWLS mean-adjusted and mean- and variance-adjusted statistics. However,
Yang-Wallentin et al. (2010), who only created mild threshold asymmetry, found that
it made no difference for the rejection rates of mean- and mean- and variance-adjusted
cat-ULS and cat-DWLS statistics. Thus, it may be that test statistics are robust to mildly
asymmetric thresholds but not to extremely asymmetric ones. To investigate this, we
created five threshold type conditions.

Table 1 summarizes the threshold values used. In the symmetry (S) condition, category
thresholds were distributed symmetrically around 0. In the moderate asymmetry I (MA-I)
condition, category thresholds were chosen such that the peak of the distribution fell
to the left of centre. In the extreme asymmetry I (EA-I) condition, category thresholds
were typically more skewed than in the MA-I condition and were also such that the
lowest category would always contain the largest number of cases. As Table 1 illustrates,
with 3 or more categories this means that the smallest category in the MA-I condition is
smaller than the smallest category in the EA-I condition, and thus it is not as clear which
threshold condition is more ‘difficult’. In the S, MA-I, and EA-I conditions, all variables
had the same threshold values. The remaining two conditions, moderate asymmetry II
(MA-II) and extreme asymmetry II (EA-II), had identical threshold values to MA-I and
EA-I, except that the direction of the asymmetry was reversed for half the variables. This
situation is expected to make estimation of positive correlations particularly difficult.

4.4. Sample size
Four sample sizes were studied:N = 100, 150, 350, and 600. In structural equation
modelling applications, sample sizes less than 200 are typically considered small. Thus,
two small and two medium sample sizes are studied.

4.5. Data generation and analysis
Continuous normally distributed data were generated and automatically categorized
using the simulation feature of EQS 6.1 (Bentler, 2008). Note that new data were
generated for each of the 240 conditions – that is, the same continuous data were
not categorized in more than one way.

Data in all 240 cells of the design were analysed ten times using Mplus 6.11. The ten
analyses differed in the following ways: the type of test statistic requested (five statistics,
given by equations (1)–(5)); and whether the correct or an incorrect model was fitted
to data. These are now discussed in more detail.
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In Mplus, one cannot obtain more than one test statistic associated with a particular
estimator in one run, and thus analyses had to be done separately for each test statistic
studied. For the cat-DWLS estimator, the analysis was done three times for each type
of fitted model. The first cat-DWLS analysis set ESTIMATOR = WLSM, to obtain the
mean-adjusted statistic TDWLS−M given by equation (1). The second cat-DWLS analysis
set ESTIMATOR = WLSMV, SATTERTHWAITE = ON, to obtain the original mean- and
variance-adjusted statistic TDWLS−MV1 given by equation (2). The third cat-DWLS analysis
set ESTIMATOR = WLSMV (omitting the second command activates the default, which
is equivalent to specifying SATTERTHWAITE = OFF), obtaining the new mean- and
variance-adjusted statistic TDWLS−MV2 given by equation (4). Note that the terminology
used by the Mplus syntax is somewhat misleading in that the estimator in all three analyses
actually remains the same (diagonally weighted least squares), but what changes is the
printed test statistic. For the cat-ULS estimator, the analysis was done only twice for
each type of fitted model, because the cat-ULS version of the mean-adjusted statistic
that would be analogous to (1) is not available in Mplus. The first cat-ULS analysis
set ESTIMATOR = ULSMV, SATTERTHWAITE = ON, to obtain the original mean- and
variance-adjusted statistic TULS−MV1 given by equation (3). The second cat-ULS analysis set
ESTIMATOR = ULSMV, obtaining the new mean- and variance-adjusted statistic TULS−MV2

given by equation (5).
Two models were fitted to data. The first model was the correct model that generated

the data: a two-factor CFA model with free loadings and factor correlation. Rejection rates
of the five test statistics for this model provide information about Type I error rates. The
second model was a one-factor model with freely estimated loadings. Because this is the
wrong model for the data, rejection rates of the five test statistics for this model provide
information about power.

5. Results
Findings are summarized with respect to three outcomes: non-convergence/improper
solutions rates; Type I error rates; and power. These are discussed in turn.

5.1. Convergence failures and improper solutions
While the focus of this paper is on test statistics, and not on parameter estimates, rates
of non-convergence and improper solutions remain relevant. When comparing rejection
rates of test statistics, particularly across different estimators, results may depend on how
convergence failures and improper solutions are treated during the comparison. Even
within the same estimator, different test statistics may ‘win’ when the comparison is
done including improper solutions compared to when excluding them. We first discuss
the observed number of convergence failures and rates of improper solutions before
addressing the issue of how they should be treated in the test statistics comparison.

Table 2 (left panel) shows the number of convergence failures for model 1. At
N = 600, there are no convergence failures, and these columns are omitted. Note that
convergence rates differ by the type of estimator only (cat-ULS vs. cat-DWLS), and within a
particular estimator are not affected by the type of test statistic. Most convergence failures
occur when the sample size is small and the data have few categories. Convergence rates
for binary data are the worst. However, the number of convergence failures is negligible
in the S, MA-I, and MA-II conditions. The highest observed rate of convergence failures
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is 11.6%, corresponding to the cat-DWLS estimator. ULS almost always produces better
convergence rates than DWLS. The highest convergence failure rate for ULS is 8%). Across
all conditions, 94 more replications converged via ULS than DWLS. The ULS fit function
is simpler and thus may be computationally more stable under difficult conditions.

Somewhat surprisingly, convergence rates in all conditions are much better for the
larger model 2 (these data are not presented). It appears that a greater number of
indicators per factor (10 rather than 5) increases the stability of estimation. The number
of convergence failures is less than 5 out of 1,000 in all but three cells; in these three
cells, all corresponding to the DWLS estimator, the number of failures is 7, 7, and 11.
These values are too small to make any difference for the rejection rates.

The right panel of Table 2 shows the total number of convergence failures and
improper solutions for model 1. That is, the numbers in the right panel include the
convergence failures in the left panel plus any additional problematic cases. A replication
was said to have an improper solution if at least one residual variance parameter took
on a negative value (because the polychoric correlation matrix has 1s on the diagonal,
this is equivalent to excluding cases where at least one factor loading was estimated
to be greater than 1). Additionally, all replications were checked for outlying estimates
of standard errors (SEs), namely SEs greater than 1. However, with the exception of
a single replication in a single cell, all SE outliers occurred in replications that also
contained improper solutions.

The pattern here is similar, in that the intersection of a small size and binary data
creates the most troublesome conditions in terms of the number of problematic cases.
The most difficult conditions correspond to the two extreme asymmetry threshold
conditions, where almost half of all replications produce improper solutions or result
in convergence failures in some cells. It is now the case that cat-DWLS leads to slightly
lower combined rates of convergence failures and improper solutions than does cat-ULS.
A total of 91 more cases are considered acceptable under cat-DWLS than under cat-ULS.
This advantage is mostly due to improper solutions in the two extreme asymmetry
conditions.

The number of improper solutions is much smaller for the larger model 2 (these data
are not presented). The total number of convergence failures and improper solutions
across S, MA-I, and MA-II threshold conditions was between 0 and 4 for data with 3–7
categories, and between 0 and 2 for the largest three sample sizes for data with any
number of categories. The only conditions with a greater number of problematic cases
were at the intersection of 2-category data and N = 100, where the greatest number
of improper solutions was 24. In the EA-I and EA-II threshold conditions, the greatest
number of problematic cases was 129. In general, the number of problematic cases for
model 2 was at least three times smaller than the corresponding number for model 1.

One way to summarize the results of Table 2 is as follows: ULS is more likely to
produce any output, while DWLS is more likely to produce “clean” output. These
findings replicate those of Forero et al. (2009), who found that cat-DWLS produced
more cases that converged without outliers, and of Yang-Wallentin et al. (2010), who
found that ULS converged more frequently. However, the differences among the methods
in the number of acceptable cases, defined either way, is never greater than 6% of all
cases, and is typically much smaller. It is not clear that one method should be preferred
over the other based on convergence rates and improper solutions alone.

In order to meaningfully compare Type I error rates for the five test statistics, a
decision must be made about how to treat convergence failures and improper solutions
in the computations of the Type I error rates. There is some disagreement among
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methodologists as to the best strategy. From a statistical point of view, Type I error rates
are only meaningful if they are computed across all replications in a cell, that is, out of
1,000 cases. Conditioning the choice of replications to be kept in the analysis in any way
ruins the statistical rationale for expecting a 5% rejection rate at � = .05. This is because
exclusion criteria are typically correlated with the size of the test statistic itself. Some
programs, including Mplus, do not produce any output when a case fails to converge;
it is thus impossible to use the inclusive strategy of evaluating rejection rates across
all cases. Because researchers frequently interpret lack of convergence as indicative of
poor model fit, another approach is to count non-converged cases as rejections of the
model (Yuan & Hayashi, 2003). This strategy has the potential to produce strongly biased
rejection rates in difficult conditions (e.g., small N , asymmetric threshold distributions),
and it is not a very common strategy in practice. An intermediate strategy would be to
simply exclude convergence failures from the analysis. We follow this strategy.2

The case of improper solutions is more complicated, and the decision has the
potential to skew the results since many such cases were observed. Chen, Bollen, Paxton,
Curran, & Kirby (2001) conducted a simulation study investigating the rate of improper
solutions as a function of model misspecification and did not find a clear relationship,
concluding that “researchers should not use negative error variance estimates as an
indicator of model misspecification” (p. 501). Improper solutions are in fact to be
expected in small samples and do not represent a statistical anomaly (Savalei & Kolenikov,
2008). Thus, unlike with convergence failures, replications with improper solutions
probably should not be counted as cases where the model is rejected. In fact, because
such cases typically produce full model output, one can simply include them in the
study, which is the strategy employed here. We believe it would be statistically unwise
to exclude them from the computation of rejection rates, because as much as 46% of all
replications in some cells would have to be excluded. However, results were compared
with and without the inclusion of improper solutions, and only minor differences were
found (see also Chen et al., 2001). The largest of these differences are noted in this text.

5.2. Type I error rates
Tables 3–8 present Type I error rates at � = .05 for data with 2 to 7 categories,
respectively. Data for both models are included in each table. Rejection rates are based on
all converged cases. Rejection rates in these tables are highlighted if they are statistically
greater than .05. The 95% confidence interval for rejection rates when the population
value is .05 is from .0365 to .0635, based on 1,000 replications. Rejection rates in
Tables 3–8 are additionally printed in bold if they fall outside the bounds specified
by Bradley’s liberal criterion, which are from .025 to .075 (Bradley, 1978). In the few
difficult conditions when virtually all cells are highlighted and in bold, test statistics can
be compared based on the absolute rejection rates – the extent of inflation still matters
in this case, in that a rejection rate of 10% indicates better performance in difficult
conditions than a rejection rate of 20%.

Across all numbers of categories (all tables), the original and the new versions of the
mean- and variance-adjusted statistics perform very similarly for both estimation methods.

2Results treating convergence failures as rejections can easily be obtained by combining the presented results
with the data from Table 2. For instance, if convergence failures were counted as rejections in the N = 100,
EA-II, 2-category condition, the cat-ULS statistics would have Type I rates that are 8% higher, and cat-DWLS
statistics would have Type I error rates that are 11.6% higher.
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Table 3. Rejection rates of five test statistics at � = .05 when the number of categories is 2. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05 (for 1,000 replications, this interval is from .0365 to .0635). Values are highlighted
and in bold if they additionally fall outside Bradley’s liberal criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .090 .047 .051 .021 .024 .238 .043 .048 .012 .013
150 .079 .051 .054 .036 .037 .131 .034 .035 .013 .013
350 .065 .044 .044 .037 .037 .096 .042 .042 .028 .030
600 .072 .058 .059 .055 .055 .077 .046 .047 .037 .039

MA-I 100 .105 .063 .064 .026 .027 .238 .048 .054 .016 .016
150 .089 .056 .058 .037 .040 .175 .047 .050 .016 .020
350 .073 .057 .057 .046 .048 .101 .036 .037 .024 .025
600 .085 .068 .068 .061 .063 .095 .051 .053 .040 .043

MA-II 100 .099 .057 .059 .031 .033 .231 .047 .059 .005 .008
150 .096 .058 .062 .037 .040 .181 .052 .054 .016 .018
350 .055 .041 .041 .035 .035 .101 .048 .049 .029 .034
600 .060 .049 .049 .046 .046 .087 .062 .063 .048 .050

EA-I 100 .390 .231 .244 .010 .013 .942 .709 .736 .003 .003
150 .276 .207 .218 .025 .027 .768 .578 .587 .012 .016
350 .075 .051 .053 .042 .042 .156 .044 .045 .027 .033
600 .080 .059 .060 .056 .058 .106 .050 .051 .044 .046

EA-II 100 .457 .342 .355 .008 .010 .953 .835 .849 .001 .001
150 .352 .284 .287 .030 .031 .922 .789 .796 .010 .012
350 .108 .083 .084 .055 .056 .328 .218 .220 .047 .049
600 .078 .060 .061 .060 .062 .161 .092 .092 .063 .065

The new versions exhibit slightly higher rejection rates. The cat-ULS mean- and variance-
adjusted statistics (equations (3) and (5)) are particularly similar, with the maximum
difference never exceeding 1% for any pair of cells corresponding to model 1, and
with the maximum difference never exceeding 1.5% for any pair of cells corresponding
to model 2. In the vast majority of conditions, the differences are much smaller. The
cat-DWLS statistics (equations (2) and (4)) are also very similar but the differences are
slightly larger. For model 1, the difference between statistics (2) and (4) exceeds 1% only
in two cells across all tables. For model 2, the difference between statistics (2) and (4)
exceeds 1% in many cells corresponding to the smallest sample size (N = 100), but it
remains less than 2.5%. The largest differences occur for data with 7 categories. Thus, the
original versions of the mean- and variance-adjusted statistics perform uniformly better,
but the difference is typically small. The difference between old and new mean- and
variance-adjusted statistics is not emphasized in the remainder of this section, and only
the behaviour of the original mean- and variance-adjusted statistics (2) and (3) will be
discussed.

Table 3 presents the rejection rates for binary data. Test statistics generally do
best with symmetric (S) thresholds, followed by moderate asymmetry (MA) conditions,
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Table 4. Rejection rates of five test statistics at � = .05 when the number of categories is 3. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05. Values are highlighted and in bold if they additionally fall outside Bradley’s liberal
criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .103 .059 .062 .025 .027 .218 .029 .031 .005 .007
150 .097 .054 .054 .034 .035 .169 .029 .035 .017 .017
350 .080 .058 .059 .044 .048 .098 .036 .037 .027 .030
600 .061 .048 .049 .039 .040 .098 .044 .045 .032 .033

MA-I 100 .102 .057 .059 .038 .041 .229 .039 .042 .010 .012
150 .103 .070 .074 .054 .054 .168 .033 .042 .017 .017
350 .068 .047 .047 .039 .039 .100 .044 .045 .028 .033
600 .069 .050 .051 .049 .050 .105 .054 .055 .040 .043

MA-II 100 .112 .056 .063 .032 .035 .243 .046 .051 .021 .025
150 .096 .067 .069 .048 .052 .145 .033 .036 .014 .015
350 .066 .046 .046 .039 .039 .121 .047 .050 .037 .037
600 .082 .066 .066 .059 .059 .084 .047 .050 .039 .042

EA-I 100 .150 .082 .086 .052 .057 .433 .101 .112 .031 .033
150 .116 .069 .071 .044 .045 .291 .068 .075 .024 .026
350 .090 .067 .068 .050 .054 .126 .047 .048 .032 .034
600 .076 .051 .052 .049 .050 .107 .052 .055 .042 .044

EA-II 100 .178 .098 .106 .054 .059 .443 .138 .145 .053 .062
150 .145 .098 .101 .061 .065 .271 .092 .095 .043 .048
350 .064 .046 .046 .034 .037 .147 .072 .074 .052 .054
600 .065 .057 .058 .052 .052 .105 .052 .053 .045 .045

followed by extreme asymmetry (EA) conditions. The cat-DWLS mean-adjusted statistic
TDWLS−M (equation (1)) performs the worst, exhibiting inflated rejection across almost
all conditions, particularly in small samples (N = 100 and 150) and in the EA conditions,
where its rejection rates are abysmal, exceeding 20%. They are worse for model 2.
These rejection rates become somewhat smaller (by .013 to .035) when improper
solutions are excluded, but this improvement is not very helpful (these data are not
presented). The mean- and variance-adjusted statistics TDWLS−MV1 and TULS−MV1 (equations
(2) and (3), respectively) perform well in S and both MA conditions, even in small
samples. However, TULS−MV1 tends to under-reject models somewhat in small samples,
particularly for the larger model 2, and TDWLS−MV1 produces better rejection rates. In
the EA conditions, however, the performance of TDWLS−MV1 becomes abysmal for small
sample sizes (N = 100 and 150). These rejection rates are up to 2.3% smaller when
improper solutions are excluded, but again, this decrease is inconsequential (these data
are not presented). The performance of TULS−MV1 remains quite good even in the EA
conditions, but this statistic continues to under-reject in smaller sample sizes, particularly
with model 2. Overall, because under-rejection is typically considered to be less of a
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Table 5. Rejection rates of five test statistics at � = .05 when the number of categories is 4. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05. Values are highlighted and in bold if they additionally fall outside Bradley’s liberal
criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .156 .085 .089 .051 .054 .368 .081 .089 .019 .021
150 .120 .068 .069 .046 .049 .225 .072 .082 .031 .033
350 .095 .059 .060 .045 .046 .144 .058 .061 .041 .043
600 .060 .047 .048 .043 .044 .109 .045 .046 .039 .039

MA-I 100 .155 .077 .081 .050 .053 .422 .112 .126 .038 .042
150 .134 .084 .089 .065 .069 .281 .098 .105 .041 .045
350 .094 .068 .072 .060 .061 .162 .063 .068 .054 .056
600 .087 .064 .064 .062 .063 .111 .048 .048 .036 .038

MA-II 100 .173 .099 .106 .061 .065 .418 .127 .140 .040 .046
150 .117 .075 .076 .054 .056 .261 .073 .083 .036 .036
350 .078 .057 .059 .043 .047 .144 .067 .066 .046 .051
600 .068 .051 .051 .046 .047 .121 .074 .074 .062 .064

EA-I 100 .156 .077 .084 .032 .038 .366 .083 .098 .022 .033
150 .117 .076 .078 .055 .056 .248 .074 .080 .035 .039
350 .080 .057 .062 .045 .046 .142 .050 .051 .037 .040
600 .091 .061 .061 .057 .059 .087 .041 .045 .036 .036

EA-II 100 .175 .091 .097 .050 .050 .377 .106 .115 .030 .036
150 .121 .069 .071 .051 .052 .242 .081 .087 .037 .038
350 .092 .066 .069 .053 .056 .123 .056 .058 .038 .040
600 .064 .055 .056 .049 .052 .103 .050 .053 .039 .040

problem than over-rejection, it can be concluded that TULS−MV1 outperforms TDWLS−MV1

with binary data, and TDWLS−M should not be used.
Table 4 presents the results for data with 3 categories. The patterns of results

are generally similar to those for binary data. Test statistics again do best in S and
MA conditions. The cat-DWLS mean-adjusted statistic TDWLS−M again does not do well,
particularly in the two smaller sample sizes. This statistic will not be discussed for the
rest of this section. The mean- and variance-adjusted statistics TDWLS−MV1 and TULS−MV1

perform well in S and both MA conditions. In the EA conditions, TDWLS−MV1 again exhibits
inflated rejection rates in smaller sample sizes, but the extent of this over-rejection is
not nearly as dramatic as it was with binary data. Interestingly, TULS−MV1 performs best
in the EA conditions, but in the S and MA conditions tends to under-reject in the smaller
sample sizes. It is difficult to recommend one mean- and variance-adjusted statistic over
the other from these data. There are virtually no differences in the results when improper
solutions are excluded; only in two cells do the results change by more than 1%, and
this change does not affect the conclusions. Removing improper solutions has virtually
no effect on data with more than 3 categories, and will not be discussed further.



16 Victoria Savalei and Mijke Rhemtulla

Table 6. Rejection rates of five test statistics at � = .05 when the number of categories is 5. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05. Values are highlighted and in bold if they additionally fall outside Bradley’s liberal
criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .205 .116 .124 .067 .074 .444 .120 .132 .049 .054
150 .139 .095 .095 .070 .071 .292 .088 .093 .037 .038
350 .104 .079 .080 .065 .067 .147 .052 .054 .039 .039
600 .085 .062 .063 .056 .056 .132 .052 .054 .043 .044

MA-I 100 .228 .135 .140 .080 .081 .525 .172 .187 .082 .089
150 .158 .100 .104 .072 .074 .360 .140 .145 .072 .082
350 .107 .073 .074 .057 .061 .162 .078 .081 .054 .055
600 .095 .074 .077 .069 .070 .114 .040 .043 .036 .037

MA-II 100 .225 .127 .134 .068 .073 .500 .160 .176 .058 .068
150 .158 .112 .114 .080 .087 .348 .126 .134 .064 .070
350 .077 .054 .055 .041 .044 .156 .071 .074 .051 .053
600 .082 .060 .061 .054 .055 .125 .050 .052 .041 .041

EA-I 100 .137 .079 .081 .052 .053 .378 .098 .108 .036 .039
150 .120 .077 .081 .056 .059 .272 .071 .074 .033 .042
350 .088 .062 .062 .058 .058 .135 .043 .045 .029 .029
600 .085 .065 .067 .059 .064 .115 .048 .051 .037 .039

EA-II 100 .172 .099 .103 .059 .062 .404 .107 .112 .041 .048
150 .112 .070 .075 .053 .055 .274 .090 .093 .049 .054
350 .093 .062 .064 .058 .060 .135 .056 .060 .041 .044
600 .069 .057 .057 .055 .055 .100 .053 .056 .039 .039

Table 5 presents the results for data with 4 categories. The main change in the
pattern of the results is that, relative to the data with fewer categories, TDWLS−MV1

now performs worse, exhibiting inflated rejection rates, in S and MA conditions when
the sample size is N = 100 or 150. However, relative to data with fewer categories,
TDWLS−MV1 performs better in the two EA conditions. TULS−MV1 performs better than
TDWLS−MV1 in almost all conditions. It is worth noting that as the number of categories
has increased from 2 to 4, the results for all test statistics have become less differentiated
as a function of the threshold conditions. Thresholds matter less as the data approach
continuity.

Table 6 presents the results for data with 5 categories. The main change in the
pattern of results is that the rejection rates in the S and both MA threshold conditions
are uniformly higher. Even TULS−MV1, which tended to under-reject models with fewer
categories, now exhibits slightly inflated rejection rates, particularly in smaller samples.
Its performance in the S and MA conditions is still better than that of TDWLS−MV1, however.
Additionally, in the EA conditions, TULS−MV1 does very well, while TDWLS−MV1 does poorly
in small samples. Overall, the performance of all statistics is now worse in the MA
conditions than in the EA conditions. Table 7, which presents data for 6 categories,
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Table 7. Rejection rates of five test statistics at � = .05 when the number of categories is 6. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05. Values are highlighted and in bold if they additionally fall outside Bradley’s liberal
criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .242 .138 .145 .091 .096 .559 .201 .220 .079 .087
150 .166 .103 .108 .068 .068 .358 .128 .133 .055 .060
350 .109 .072 .074 .061 .064 .187 .081 .085 .062 .067
600 .077 .064 .064 .055 .056 .126 .060 .061 .047 .050

MA-I 100 .237 .155 .160 .093 .101 .563 .208 .224 .088 .097
150 .172 .115 .116 .085 .088 .416 .182 .187 .092 .096
350 .124 .090 .093 .074 .077 .199 .092 .096 .067 .069
600 .095 .073 .073 .063 .065 .132 .064 .067 .053 .055

MA-II 100 .239 .158 .162 .082 .088 .577 .236 .251 .096 .101
150 .168 .114 .115 .079 .083 .348 .126 .134 .064 .070
350 .112 .075 .076 .057 .062 .179 .086 .090 .065 .065
600 .081 .068 .071 .052 .055 .140 .072 .072 .062 .063

EA-I 100 .183 .101 .107 .052 .056 .435 .117 .128 .049 .054
150 .141 .094 .097 .072 .074 .284 .079 .082 .049 .052
350 .093 .061 .065 .052 .053 .159 .063 .065 .054 .056
600 .079 .067 .067 .062 .063 .116 .064 .066 .048 .051

EA-II 100 .177 .110 .113 .069 .075 .428 .131 .145 .059 .066
150 .139 .086 .087 .071 .072 .287 .097 .101 .048 .051
350 .104 .081 .084 .072 .074 .146 .067 .071 .052 .053
600 .078 .061 .062 .055 .056 .119 .064 .064 .054 .056

exhibits similar patterns, except that the performance of all statistics deteriorates
slightly. This pattern continues in Table 8, which presents data for 7 categories. All test
statistics over-reject at the smallest two sample sizes, but TULS−MV1 does much better than
TDWLS−MV1. The performance with EA thresholds is slightly better than the performance
with MA or S thresholds.

Overall, the two mean- and variance-adjusted statistics followed somewhat different
patterns. The cat-DWLS statistic TDWLS−MV1 performed fairly well in S and the two
MA conditions when the number of categories was 2 or 3, and then deteriorated
for these conditions when the number of categories was 4–7. The cat-ULS statistic
TULS−MV1 performed well or under-rejected in the S and the MA conditions when
the number of categories was 2–4. In the EA conditions, TDWLS−MV1 performed very
poorly when the number of categories was 2, then showed increasing improve-
ment as the number of categories increased from 3 to 4, then slowly began to
deteriorate as the number of categories further increased from 5 to 7. In the EA
conditions, TULS−MV1 performed well with 3–7 categories, but under-rejected a little with
2 categories.
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Table 8. Rejection rates of five test statistics at � = .05 when the number of categories is 7. The
rates are out of the number of all converged cases. Values are highlighted if they are statistically
greater than .05. Values are highlighted and in bold if they additionally fall outside Bradley’s liberal
criterion (between .025 and .075)

Model 1 Model 2

DWLS ULS DWLS ULS
Threshold Sample
condition size, N (1) (2) (4) (3) (5) (1) (2) (4) (3) (5)

S 100 .291 .193 .204 .126 .131 .665 .290 .315 .121 .134
150 .193 .134 .138 .092 .095 .463 .190 .211 .095 .102
350 .114 .079 .081 .061 .063 .199 .096 .097 .070 .073
600 .104 .078 .082 .073 .077 .152 .075 .076 .060 .061

MA-I 100 .261 .172 .177 .097 .100 .620 .252 .271 .098 .113
150 .179 .127 .130 .090 .094 .429 .160 .170 .071 .080
350 .114 .089 .091 .078 .081 .213 .090 .093 .065 .068
600 .097 .072 .074 .067 .070 .149 .084 .085 .066 .068

MA-II 100 .218 .154 .156 .094 .099 .593 .238 .261 .091 .103
150 .174 .116 .120 .078 .082 .450 .185 .192 .097 .102
350 .115 .077 .078 .063 .064 .262 .114 .121 .078 .083
600 .090 .066 .067 .060 .061 .155 .080 .082 .070 .071

EA-I 100 .208 .129 .135 .081 .083 .534 .172 .185 .079 .083
150 .144 .093 .093 .072 .072 .351 .107 .117 .060 .065
350 .094 .070 .072 .061 .061 .165 .065 .068 .051 .054
600 .080 .063 .063 .058 .059 .128 .051 .052 .039 .043

EA-II 100 .203 .126 .131 .079 .085 .521 .191 .208 .087 .098
150 .146 .099 .107 .076 .077 .319 .098 .103 .054 .061
350 .085 .061 .063 .056 .056 .179 .074 .074 .053 .058
600 .080 .049 .050 .045 .046 .132 .069 .071 .062 .063

5.3. Power
Table 9 presents selected power results for TULS−MV1 and TDWLS−MV1. Only the smallest
two sample sizes are presented. Power results are not interpretable when Type I error is
not controlled, because inflated Type I error will always lead to artificially high power.
Similarly, extremely low Type I error rates can lead to artificially low power. Because, in
many conditions, TDWLS−MV1 tended to exhibit inflated rejection rates (e.g., two-category
data, EA thresholds, small samples), while TULS−MV1 tended to exhibit rejection rates
below nominal, the power comparison of the two statistics is not very meaningful. To
get around this problem, Table 9 simply highlights any cell that exhibits power less than
.9, and additionally shows in bold any cell that exhibits power less than .8. Given that
a grossly misspecified model is fitted to data (a one-factor model is fitted to two-factor
data with a factor correlation of .3), it is reasonable to wish that power be at least .8 in
such a situation.

Table 9 reveals that power is much better for the larger model (model 2) than for
the smaller model (model 1). When a one-factor model is fitted to the two-factor data
with 10 indicators per factor (model 2), power is always greater than .8 for data with
4–7 categories. For the S and the two MA conditions, power is greater than .9 for data
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Table 9. Power of the new mean- and variance-adjusted test statistics (equations (4) and (5)) at
� = .05 at N = 100 and 150. Rejection rates are out of the number of all converged cases. Values
less than .9 are highlighted. Values less than .8 are in bold.

Model 1 Model 2

N = 100 N = 150 N = 100 N = 150
Threshold Number of
condition categories DWLS ULS DWLS ULS DWLS ULS DWLS ULS

S 2 .532 .422 .763 .706 .881 .764 .988 .967
3 .730 .622 .938 .897 .978 .922 .999 .997
4 .883 .827 .981 .969 .997 .992 1.000 .999
5 .929 .889 .997 .989 1.000 .997 1.000 1.000
6 .962 .938 .996 .991 1.000 1.000 1.000 1.000
7 .971 .944 .998 .997 1.000 1.000 1.000 1.000

MA-I 2 .479 .358 .693 .612 .857 .711 .970 .947
3 .790 .726 .948 .928 .988 .961 1.000 .997
4 .867 .812 .972 .955 .995 .985 1.000 1.000
5 .919 .882 .989 .982 1.000 .995 1.000 1.000
6 .955 .916 .995 .987 1.000 1.000 1.000 1.000
7 .962 .942 .999 .997 1.000 1.000 1.000 1.000

MA-II 2 .504 .396 .690 .634 .857 .723 .974 .949
3 .782 .713 .948 .922 .983 .965 .999 .999
4 .864 .815 .973 .955 .998 .995 .999 .999
5 .949 .907 .983 .970 .999 .997 1.000 1.000
6 .941 .898 .992 .989 1.000 1.000 1.000 1.000
7 .966 .941 .997 .995 1.000 1.000 1.000 1.000

EA-I 2 .400 .075 .444 .186 .917 .135 .917 .498
3 .508 .378 .729 .631 .884 .758 .974 .950
4 .713 .626 .889 .846 .980 .931 1.000 .999
5 .818 .747 .952 .932 .986 .970 1.000 .999
6 .888 .834 .977 .969 1.000 1.000 1.000 1.000
7 .905 .881 .985 .981 1.000 1.000 1.000 1.000

EA-II 2 .511 .040 .606 .162 .956 .041 .983 .388
3 .536 .427 .720 .654 .921 .826 .981 .955
4 .703 .621 .884 .857 .970 .941 .999 .999
5 .838 .786 .948 .927 .994 .984 1.000 .999
6 .882 .835 .979 .966 1.000 .990 1.000 1.000
7 .925 .889 .979 .973 1.000 1.000 1.000 1.000

with 3–7 categories, and it is reasonably high even for data with 2 categories, never
falling below .7. The problematic conditions are the EA conditions with binary data,
particularly when N = 100. Here, power is extremely high for TDWLS−MV1 and extremely
low for TULS−MV1. For instance, in the EA-II condition, power is .96 for TDWLS−MV1 and
an abysmal .04 for TULS−MV1. A comparison to Type I error rates is necessary to reveal
the uselessness of both statistics in this situation. Type I error rates in this condition
are .835 for TDWLS−MV1 and .001 for TULS−MV1 (see Table 2). Thus, TDWLS−MV1 tends to
reject all models regardless of whether or not they are correct, and TULS−MV1 tends to
accept all models regardless of whether or not they are correct. Thus, a combination of
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binary data, small sample size, and extreme thresholds creates a situation where model
evaluation is not possible using any test statistic.

When a one-factor model is fitted to the two-factor data with 5 indicators per factor
(model 1), power is generally worse. In the S and the two MA conditions, power is
greater than .8 for data with 4–7 categories. Power is worse, falling to .62, for the EA
conditions for data with 4–7 categories. Binary and 3-category data present the most
problems for power. In S and the two MA conditions, the two statistics have similar
power in this situation. In the EA conditions, particularly with binary data, it is again the
case that the test statistics diverge, and that both are useless. Power is as high as the
Type I error rate for the TDWLS−MV1 statistic, and power is as low as the Type I error rate
for the TULS−MV1 statistic. Overall, one cannot recommend one statistic over another on
the basis of power, because either they both perform fairly well, or, in the most difficult
conditions, both fail.

Data for N = 350 are not presented. For model 2, power is at least .99 in all conditions
and for both test statistics. For model 1, power is at least .99 for 3–7 categories across
all conditions and for both test statistics. For binary data in the S and the MA conditions,
power is at least .99. For binary data in the EA conditions, power is between .74 and .81.
Data for N = 600 are also not presented. When N = 600, power is at least .99 for 3–7
categories, and at least .95 for binary data.

6. Summary and discussion
This paper has summarized the results of a Monte Carlo study conducted to compare the
performance of five different categorical data test statistics available in Mplus 6.11. Three
of the statistics are associated with the DWLS estimator, and are the mean-adjusted and
two types of mean- and variance-adjusted test statistic. Two of the statistics are associated
with the ULS estimator, and are two types of mean- and variance-adjusted test statistic.

While some earlier research (Yang-Wallentin et al., 2010) supports the use of
the mean-adjusted DWLS statistic, TDWLS−M (equation (1)), this statistic was found to
perform very poorly, exhibiting extremely inflated Type I error rates in most conditions,
particularly for the larger model 2. Its performance is only occasionally acceptable at the
largest studied sample size and with the smaller model 1. Thus, while the mean-adjusted
statistic is often found to perform well with continuous non-normal data, its categorical
data counterpart is not recommended.

This study also examines two different versions of the mean- and variance-adjusted
statistics, for both estimators. The original version (statistics TDWLS−MV1 and TULS−MV1)
adjusts the degrees of freedom (Satorra & Bentler, 1994; Muthén et al., 1997; Muthén,
1993) of the reference distribution, which may be theoretically problematic. The new
version (statistics TDWLS−MV2 and TULS−MV2) does not require an adjustment for degrees
of freedom, and thus has theoretical advantages (Asparouhov & Muthén, 2010). It was
found, however, that the new versions of these statistics had slightly more inflated Type
I error rates, although this difference typically did not exceed 1%. Thus, we tentatively
recommend the new versions of the mean- and variance-adjusted statistics (which are
now the default in Mplus), although further study is perhaps needed to ensure that the
inflation in Type I error rate does not become greater under some other set of conditions.

When comparing Type I error rates across the mean- and variance-adjusted statistics
across estimators, it appears to be the case that the cat-ULS statistic did better overall
than the cat-DWLS statistic. Its Type I error rates were almost never inflated, but it
tended to exhibit very low rejection rates in some conditions, particularly with fewer
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categories. The Type I error rates of the cat-DWLS statistic were frequently inflated,
particularly with greater number of categories. Inflated Type I error rates are considered
problematic. Type I error rates below nominal are not necessarily problematic unless
they translate into much lower power. Thus, we recommend the cat-ULS statistic in any
condition where its power is considered adequate (by Table 9), which is in the majority
of the conditions studied. More generally, because cat-ULS estimates and robust standard
errors have been found to be slightly superior to cat-DWLS estimates in previous research
(Forero et al., 2009), we recommend the use of the cat-ULS estimator over the cat-DWLS
estimator with categorical data, particularly in small to moderate samples.

The most problematic conditions for both statistics were created by the intersection
of small samples, few categories, and extreme thresholds. This effect was mostly limited
to N = 100, although sometimes N = 150, and to binary (and less frequently, 3-category)
data. In these conditions, the cat-DWLS statistic had very high Type I error rates and
power rates, so that the statistic would tend to reject any model. The cat-ULS statistic
had very low Type I error rates and power rates, so that the statistic would accept any
model. There is no remedy for this. We have to accept the fact that categorizing data
leads to loss of information, and when this categorization is most severe (binary data),
and done in such a way as to be least informative (extreme thresholds), a sample size of
N = 100 is simply not large enough to provide information about the correctness of any
particular model. With continuous data, it is possible to obtain information about the
appropriateness of a model at N = 100. With severely categorical data, this sample size is
just not enough. Thus, we recommend that with binary and 3-category data, samples of at
least N = 150 be collected to draw any inferences about correctness of the hypothesized
model. The only exception is when estimated thresholds appear symmetric; however,
even in this case power tends to be low.
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