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Planned Missing Data Designs in Educational
Psychology Research

Mijke Rhemtulla1,2 and Gregory R. Hancock3

1Department of Psychology, University of Amsterdam, The Netherlands
2Department of Psychology, University of California, Davis

3Department of Human Development and Quantitative Methodology, University of Maryland

Although missing data are often viewed as a challenge for applied researchers, in fact missing

data can be highly beneficial. Specifically, when the amount of missing data on specific

variables is carefully controlled, a balance can be struck between statistical power and

research costs. This article presents the issue of planned missing data by discussing specific

designs (i.e., multiform designs, longitudinal wave-missing designs, and 2-method

measurement designs), introducing the power and cost benefits of such scenarios to applied

education and educational psychology researchers.

Within educational and psychological research, missing

data seem to come with the territory. The study of learning

within school settings, for example, a common focus of

educational psychology research, might involve tightly

designed randomized controlled trials to compare programs

to facilitate learning. Also common are longitudinal investi-

gations (possibly even within randomized controlled trials),

designed to gauge whether, at what rate, and under what

circumstances learning is occurring. In addition to their

inferential threats arising from cohort/classroom effects

and changes in context over time (e.g., students transition-

ing to new classrooms and/or to new school settings, such

as from elementary to middle school), longitudinal designs

present the very practical challenges that following individ-

uals over time is costly and typically results in missing

data. These missing data could arise for fairly simple rea-

sons, such as school absences, but are more often part of a

pattern of attrition resulting from families moving or per-

haps from individual students requiring alternative educa-

tional settings more tailored to their specific learning needs.

Suffice it to say, dealing with missing data, whether in

cross-sectional or longitudinal designs, is a very real part of

the research process, as can be the dread of having to do so.

Fortunately, with the advent of modern missing data

handling methods, and the implementation of these modern

methods in most statistical software, missing data are

becoming far less troublesome. In particular, so long as the

missingness patterns in data are not related to the missing

values themselves, analyses can proceed without much

trouble or fear of bias. In addition, although some patterns

of missing data can result in dramatically reduced power,

other patterns can largely avoid it. For example, if two vari-

ables are highly correlated, such as perceptions of academic

efficacy and academic self-worth, and one is missing many

observations, not much power will be lost for testing

parameters associated with that variable; in contrast, if the

variable with a high rate of missing data (e.g., teacher

stress) is unrelated to other variables (e.g., peer norms for

cooperation), much more power will be lost for testing its

parameters (e.g., means, variances, regression slopes).

Planned missing data designs take advantage of these

facts and impose random missingness in such a way that it

does not introduce bias and it minimizes power loss. The

result can be a dramatic reduction in cost, and even an

increase in validity due to reducing participant burden. In

this article, after a brief review of some foundations related

to missing data, we present three planned missing data

designs and how they could be implemented in educational

research. The first type of design (multiform design) is pre-

sented in the greatest detail, laying the groundwork for the

remaining two: accelerated longitudinal designs and two-

method measurement designs.

MISSING DATA MECHANISMS AND METHODS

The reasons that missing data occur, missingness mechanisms,

are typically described as falling into three categories (see,
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e.g., Little & Rubin, 2002). Put simply, the mechanism is (a)

completely unrelated to any observed or missing variables

(missing completely at random [MCAR]), (b) related to the

observed variables but not to the missing values themselves

(missing at random [MAR]), or (c) related to the values that

are missing (missing not at random). The first category,

MCAR missingness, represents an ideal because procedures

for accommodating the missing data, modern (e.g., full infor-

mation maximum likelihood or multiple imputation) or tradi-

tional (e.g., listwise or pairwise deletion), will provide

unbiased estimates of the parameters of interest. Unfortu-

nately, this ideal seldom occurs naturally. The second cate-

gory, MAR missingness, occurs when missingness is

predictable from other variables in the observed data (e.g., if

lower socioeconomic status [SES] respondents tended to omit

a particular item on a motivation survey whereas higher SES

respondents did not, then the missingness would be predicted

by SES). When missingness is MAR, modern approaches use

information from all correlated variables to approximate the

missingness mechanism, thereby helping to ensure that no

bias arises and power is maximized. Finally, when missing

data are missing not at random, the missingness is predicted

by the values on the missing variables themselves (e.g., if

lower SES students declined to provide information about

their parents’ level of education), and there are no other meas-

ures directly related to the missingness mechanism; as such,

the missing values cannot be informed by available data, lead-

ing to bias under any method. Thus, to the extent possible, it is

critical for researchers to gather data on variables that are

anticipated to be as highly predictive of the missingness as

possible (e.g., if an SES measure is of interest, data could be

collected on students’ free/reduced lunch status). Indeed, the

success of modern missing data approaches depends on it.

The twomodernmissing datamethods most highly recom-

mended (see, e.g., Enders, 2010, 2013) are full information

maximum likelihood (FIML) and multiple imputation (MI).

As the name implies, FIML uses all of the information in the

observed data to derive a single set of parameter estimates

(e.g., means, variances, regression slopes) that maximize the

likelihood of the observed data having come from the popula-

tion(s) implied by those estimates. In MI, on the other hand,

data are imputed multiple times to create m complete data

sets (m> 20 typically), each of which is in turn analyzed and

the results of which are aggregated to yield parameter esti-

mates and standard errors. Although results fromMI are gen-

erally as accurate as those produced by FIML and can be

employed in a wide range of simple and complex analyses,

FIML is available in most structural equation modeling soft-

ware packages and is assumed in the current article.

INFORMATION, EFFICIENCY, AND POWER

Returning to the seemingly unrealistic scenario where data

are MCAR, when modern missing data methods are

employed the accuracy of the resulting parameter estimates

is not a concern. That is, neither the amount of missingness

nor the pattern of missingness will influence the accuracy

of parameter estimates. In contrast, the amount and pattern

of missingness can greatly affect the information available

to estimate parameters. Information is a statistical concept

that is inversely related to the standard errors of parameter

estimates: The more information available to estimate a

parameter, the smaller its standard error (and thus the

smaller its confidence interval, and the greater the statistical

power of a significance test on that parameter). Thus, infor-

mation is directly related to efficiency, where a more effi-

cient procedure or design results in smaller standard errors

(and therefore greater power) than a less efficient proce-

dure. Just as information is affected by sample size—a

larger total sample size yields more information and thus

more statistical power—it is also affected by missing data.

All else being equal, more missing data means more miss-

ing information, and thus larger standard errors, larger

parameter confidence intervals, and lower statistical power.

However, the amount of missing information is not a

straightforward function of the amount of missing data.

Missing information is affected by which variables are

missing (e.g., if two variables are perfectly correlated,

deleting one of them will not affect the amount of informa-

tion in the data) and the pattern of missingness (e.g., if no

participants have complete data on both X and Y, there is no

information available to estimate the X–Y correlation).

So when, as per the premise of the previous paragraph,

would one ever have data that are truly MCAR? The answer

is, when the researcher is in control of the missingness, that

is, when the researcher decides who is missing what data.

The idea behind planned missing designs, as mentioned at

the beginning of the article, is to do just that: assign partici-

pants to provide some fraction of the total data, but to do so

in a way so as to preserve information and maximize effi-

ciency while reducing cost and participant burden. The

remainder of this article introduces three such planned

missing data designs that could be especially useful within

educational and psychological research.

MULTIFORM DESIGNS

The multiform design, also known as a split questionnaire

design or an efficiency design, is a highly adaptable

approach that can be incorporated into a cross-sectional or

longitudinal design. The idea is simple: To reduce the

length of a survey or assessment, administer a subset of the

items to each participant. For example, in the classic three-

form design (Graham, Hofer, & Piccinin, 1994), items are

assigned to one of four item sets (X, A, B, or C), which are

then combined to create three short forms. Table 1 depicts

the assignment of sets to forms: The X set is included in

each form, and the other sets are each missing from one
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form. Participants are then randomly assigned to receive

one of the forms, thereby making missingness completely

random (note that to ensure completely random missing-

ness, assignment to forms must be done at the level of the

student, not a higher level such as the classroom). A multi-

form design is appropriate whenever measures include mul-

tiple-item scales or tests, as exemplified by Echols (2015) in

the assessment of peer-reported victimization in middle

school. The design is particularly valuable when the length

of the assessment is a concern, such as when fatigue effects

may compromise the validity of the data.

A growing body of evidence suggests that data resulting

from multiform designs are highly similar to those from

corresponding complete data designs. For example, Smits

and Vorst (2007) applied multiform missingness (specifi-

cally, within-block; see next) to complete survey data

assessing study skills and achievement motivation. They

compared two designs, including a three-form design with

33% missing data and a six-form design with 50% missing

data, to the complete data characteristics. They reported

that mean scale scores, reliability (Cronbach’s alpha), and

predictive validity estimates were very similar across all

designs, and only standard errors were higher with missing

data (due to the missing information, as expected).

Swain (2015) considered the effect of planned missing-

ness on students’ performance on standardized assessments

in a situation when students were not highly motivated to

succeed on the tests (i.e., test scores were used to assess the

institution, not individual students). Students were assigned

either to complete an entire assessment (2-hr test) or to

complete one form of a six-form design with 50% of the

items missing (1-hr test). Swain reported that the results

were highly similar but that students in the planned missing

conditions scored slightly but statistically significantly

higher (d D 0.172), possibly as a result of reduced fatigue.

Item analyses revealed no notable differential item func-

tioning across the two designs.

Harel, Stratton, and Aseltine (2012) investigated

whether planned missingness could be used to mitigate

repeated testing effects in a pre–post control group experi-

mental design. High school students were administered an

assessment of their attitudes and knowledge about suicide,

both before and 3 months after a suicide prevention inter-

vention. Students in the control group did not receive the

intervention. At pretest, some students were assigned the

complete assessment, whereas others received only a small

subset of the items. At posttest, all students were given the

full assessment. This study revealed several notable find-

ings. First, students who were given a longer assessment

were more likely to leave questions blank, resulting in a

higher rate of unplanned missing data. Second, students

who completed the entire pretest assessment were 3 times

more likely to skip the posttest assessment entirely (21%

vs. 7%). Third, of the students who attempted the posttest

questionnaire, those who had received the full questionnaire

at baseline were again less likely to complete all items at

posttest (25% vs. 15%). Finally, those in the no-interven-

tion control group who received the complete assessment at

pretest improved statistically significantly from pretest to

posttest, despite not receiving the intervention, whereas

those controls who received the truncated assessment at

pretest showed no such learning. Thus, the use of a planned

missing design at pretest can substantially reduce rates of

unplanned missing data and lead to larger treatment effects

by minimizing the effect of repeated testing.

BETWEEN-BLOCK VERSUSWITHIN-BLOCK
STRATEGIES

Two main strategies are available to assign items to forms.

Between-block designs assign whole scales to forms,

whereas within-block designs distribute items from each

scale across forms. Table 2 depicts a simple example in

which four scales (S1, S2, S3, S4) contain four items each

(I1, I2, I3, I4), for a total of 16 items (S1I1 through S4I4).

Each of the two strategies has pragmatic and statistical

benefits, as well as drawbacks. Statistical considerations

tend to favor the within-block strategy because it typically

results in much less loss of information (Graham, Hofer, &

MacKinnon, 1996). Each observation in a data set contains

information, some of which is shared with other observa-

tions and some of which is unique. A variable that is per-

fectly correlated with another variable in the data set (or is

a linear combination of several other variables) contributes

no new information, so if it is missing then nothing is lost.

At the other extreme, a variable that is perfectly

TABLE 1

Three-Form Design

Item Set

Form X A B C

1

2

3

Note. Gray represents missing data; white represents complete data.

TABLE 2

Within-Block Versus Between-Block Designs

Within-Block Design Between-Block Design

X A B C X A B C

S1 I1 S1 I2 S1 I3 S1 I4 S1 I1 S2 I1 S3 I1 S4 I1

S2 I1 S2 I2 S2 I3 S2 I4 S1 I2 S2 I2 S3 I2 S4 I2

S3 I1 S3 I2 S3 I3 S3 I4 S1 I3 S2 I3 S3 I3 S4 I3

S4 I1 S4 I2 S4 I3 S4 I4 S1 I4 S2 I4 S3 I4 S4 I4

Note. S1–S4D Scales 1 to 4; I1–I4D Items 1 to 4.
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uncorrelated with all other variables in the data set contrib-

utes wholly unique information, so if it is missing then that

information is entirely lost. Of course, most variables are

somewhere in between, containing a mix of shared and

unique information: The higher a variable’s correlation

with other variables in the data set, the less information loss

will occur if it has missing values. Recall that more infor-

mation loss means higher standard errors, larger confidence

intervals, and lower power to test hypotheses.

Following this principle, Raghunathan and Grizzle

(1995) advocated using the partial correlations between

pairs of variables (estimated from pilot data) to assign items

to subsets. Partial correlations reflect the information shared

between two variables controlling for all other variables in

the dataset. A high partial correlation between two varia-

bles thus means that these two variables share information

over and above that which is shared by any other variable

in the data set. To achieve maximum efficiency (i.e., mini-

mum information loss), the partial correlations between

items within a subset should be low, whereas those between

subsets should be high. Raghunathan and Grizzle tested this

principle in a simulation study and found that when the

average within-set partial correlations were .1 and between-

set partial correlations were .8, standard errors of regression

coefficients were just 1.2% larger than they were with com-

plete data. In contrast, when both within- and between-set

partial correlations were low, standard errors were 32%

larger than with complete data. Assignment of items to sets

can thus make a substantial difference to efficiency.

Variables that measure the same construct (e.g., a set of

items on a single scale) will tend to be highly correlated

with each other; variables measuring different constructs

(e.g., items on different scales) will not. Thus, to maximize

information in a planned missing design, it helps if individ-

ual participants are missing only some items on each scale

and the other items are observed. The missing items share a

great deal of information with the observed scale items,

resulting in a small amount of missing information. In con-

trast, when all of the items on a scale are set to missing,

these share relatively little information with the remaining

observed items on other scales, resulting in a greater

amount of missing information.

More completely, which strategy is more efficient

depends on what parameter is being estimated. Adig€uzel and
Wedel (2008) and Chipperfield and Steel (2009) presented

algorithms for optimizing item assignment given estimates

of the correlations among variables. These authors assumed

that the parameters of interest were means and variances of

scale scores, rather than relations between scales. For this

purpose, their simulations found that the between-block

strategy is most efficient. In latent variable designs, where

constructs are modeled as latent variables with scale items

as indicators, the most efficient strategy depends on what

parameters are of most interest: Between-block designs lead

to most efficient estimates of factor loadings and residual

variances, whereas within-block designs lead to most effi-

cient estimates of structural parameters, including regres-

sion coefficients and correlations among latent factors

(Jorgensen et al., 2014; Rhemtulla, Savalei, & Little, 2015).

Practically speaking, the within-block strategy has the

benefit of making an assessment more manageable for par-

ticipants. Adig€uzel and Wedel (2008) reported that within-

block designs are perceived to be shorter, less boring, and

less repetitive than both between-block and complete data

designs because participants are spared some of the redun-

dancy of responding to every item on each scale. On the

other hand, a practical benefit of the between-block design is

that it is possible to carry out some analyses using available

case analysis (i.e., listwise deletion). Graham (2012) vigor-

ously recommended the between-block strategy for this rea-

son, despite the statistical advantages of the within-block

design. Another benefit of the between-block strategy is that

it avoids possible order effects. Johnson, Roth, and Young

(2011) compared data on the National Survey of Fertility

Barriers collected using a complete data design to a within-

block multiform design. They found similar results across

the two designs but noted that when items in the middle of a

scale were omitted, this affected responses to items later on

the scale. In the end, in addition to pragmatic issues of cost,

educational researchers must weigh the inferential demands

of their research questions against the needs and limitations

of the individuals in the population under study in order to

choose the most appropriate design to employ.

HOW TO USE THE X SET

A very important component of the multiform design is the

X set, which contains variables that are administered to

every participant. Although it is possible to use a multiform

design with no such items (i.e., every item has some

planned missingness), simulation results suggest that

including an X set brings an advantage in terms of effi-

ciency (Rhemtulla et al., 2015). The biggest efficiency

advantage comes from assigning some items in every scale

to the X set so that some information about every construct

remains available. Indeed, a good strategy would be to put

the most reliable items on each scale in the X set in order to

be assured a set of robust variables with no missing data.

Important covariates (e.g., demographic variables) might

also be placed in the X set. A common recommendation is

that variables that are particularly important to the research

hypotheses should be included in the X set (Graham, Tay-

lor, Olchowski, & Cumsille, 2006). For example, if a study

is designed to investigate predictors of reading comprehen-

sion, it would make sense to put the entire reading compre-

hension measure in the X set to maximize power to detect

predictive relations. Similarly, there may be other key vari-

ables that should be collected from all participants. Huff,

Anderson, and Tambling (2015), for instance, gave the
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example of suicidal ideation as an item that should go in the

X set because of its importance for clinical use.

Another consideration is how many items to place in the X

set. The X set could be the same size as the other sets (e.g.,

Pettigrew et al., 2015), but there is no particular reason that

this must be the case. If the research hypotheses are not well

specified, for example, a researcher might want to hedge her

bets by including many potentially important variables in the

X set. Or, if the sample size available is not very large and

power is a concern, a more conservative amount of missing-

ness would be appropriate. For example, Reitz et al. (2015)

included 50% of their items in the X set. On the other hand, if

sample size is less of a concern than the length of the assess-

ment, fewer items in the X set means a greater reduction in

test length, allowingmore items in total to bemeasured.

HOWMANY FORMS?

Themost commonmultiform design is the three-form design

with four item sets (as shown in Table 1), but it is worth con-

sidering other variations. In general, the more item sets that

are used, the greater the reduction in assessment length that

can be achieved. Regardless of howmany sets are used, each

form should be composed of two sets in addition to the X set

(e.g., one form is composed of sets A and B, another is A

and C, and another is B and C); failing to do so would render

it impossible to estimate relations between variables in dif-

ferent non-X sets (e.g., between items in the A and B sets).

Thus, if s sets are used, each participant completes 2/s of the

items (assuming all sets contain the same number of items)

and the total number of forms is the number of combina-

tions of two sets out of all s, s!
2.s¡ 2/!

.

Because each form represents a single combination of

two item sets, the more sets and forms there are, the greater

the proportion of missing data and the smaller the proportion

of participants who provide data on any pair of variables in

different item sets. For example, in a six-form design with

item sets A to D, the relation between an item in the A set

and an item in the B set is estimated based on the N/6 partici-

pants who get the XAB form. Thus, if relations among varia-

bles between sets will be an integral part of the analysis, it is

probably wise to limit the number of sets (unless the total

sample size is very large). Table 3 gives the number of

forms, proportion of missing data, and rate of pairwise cov-

erage when three through six non-X sets are used.

EXTENDING THE MULTIFORM DESIGN
LONGITUDINALLY

Several longitudinal studies have implemented multi-

form designs within one or more measurement occasions

(e.g., Conrad-Hiebner, Schoemann, Counts, & Chang,

2015; Flay, Graumlich, Segawa, Burns, & Holliday,

2004; Hecht et al., 2003; Lin, Crnic, Luecken, & Gon-

zales, 2014). If a multiform design is to be used at mul-

tiple occasions, a design consideration that arises is how

to assign participants to forms over time. The easiest

approach may be to randomly assign participants to

forms at every occasion, eliminating the need to keep

track of which individuals get which forms at each time

point. But it is also possible to assign participants to the

same form at each occasion, or systematically rotate

forms across occasions (these strategies may be more

easily implemented when data are collected online). Jor-

gensen et al. (2014) investigated this issue using data

simulated from a longitudinal latent variable mediation

model, in which three-form missingness was applied to

indicators of three latent constructs (X, M, Y) at three

time points. They found that when the within-block

strategy was used to assign items to forms (i.e., scales

were split across item sets), assigning participants to the

same or different forms over time made no difference to

parameter estimate efficiency. However, when the

between-block strategy was used (i.e., scales were kept

together within item sets), then efficiency was improved

by assigning participants different forms across occa-

sions. In addition, if repeated-testing effects are a con-

cern, then assigning participants to different forms over

time may attenuate some of these effects or allow them

to be modeled.

MULTIFORM DESIGNS: OTHER EDUCATIONAL
ISSUES

Educational researchers might be interested in collecting

data to assess or diagnose individual students as in a single-

subject design, especially in settings where students have

special needs and/or are considered potentially at risk. Huff

et al. (2015) explored whether a multiform design could be

used in clinical assessments when the goal is to use an indi-

vidual’s assessment score for categorization (below/above a

clinical cutoff) or for classifying whether individuals

improved or failed to improve over the course of therapy.

This use of planned missingness is very different from the

TABLE 3

Number of Forms and Proportion Missing for Three- to Six-Item Sets

Sets Forms % Items Completed Pairwise Coverage

3 3 67% 1/3

4 6 50% 1/6

5 10 40% 1/10

6 15 33% 1/15

Note. The X set is not included. Sets D the number of non-X item sets;

Forms D the number of combinations of two sets. % Items Completed D
the proportion of total items completed by any one participant; Pairwise

Coverage D the proportion of participants who provide data on any pair of

two items in different sets.
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typical implementation of planned missing designs, where

the goal is usually to do an analysis at the group level for

making inference about a population—for example, to

investigate group means or relations among constructs.

When an individual score is needed, and especially when it

is needed immediately (as when an assessment is given for

the purpose of diagnosing/classifying a student), sophisti-

cated missing data methods are not available. Huff et al.

imposed 25% and 50% planned missingness on complete

data and compared the scores to those based on complete

data. They used item-mean imputation (i.e., averaging over

the available items) to get a score for each individual, reflect-

ing the assumption that the items are interchangeable.

Unsurprisingly then, with real clinical scales, this method

resulted in statistically significant differences between the

planned missing design and complete data scores. Huff et al.

advised that planned missing designs be used in this type of

situation only when scales have high internal reliability.

LONGITUDINALWAVE MISSING DESIGNS

Cross-sectional designs can be used to measure differences

among age groups or grade levels, but if one is interested in

change, these designs are problematic. For one, cohort and

age differences are confounded, so it can be impossible to

know whether an observed difference in age groups is due

to intraindividual change or to preexisting differences

between the groups. In addition, though cross-sectional

designs can be used to study group mean differences, they

do not support the examination of interindividual differen-

ces in rates of change. Longitudinal designs, therefore, in

which participants are measured at several time points, are

typically regarded as the gold standard method for studying

change. Notwithstanding, such designs also come with

practical and theoretical disadvantages. The expense and

organization required to collect longitudinal data can lead

to designs in which too many measures are included, put-

ting a high burden on participants. Finding participants who

are willing to participate over a long periods can lead to

pronounced selection effects (Bell, 1953). High rates of

attrition may dramatically change the sample characteris-

tics over the course of the study. The mere fact of being

repeatedly measured could, depending upon the outcome

variable, also induce change in participants’ behavior over

time.

For the aforementioned reasons, longitudinal designs in

which data are not collected from all participants at all mea-

surement occasions, herein referred to as wave missingness,

can have considerable benefits in terms of cost (fewer par-

ticipants must be measured at each occasion), as well as

repeated testing effects (each participant is measured fewer

times). Missingness can be distributed across occasions in

any way that suits the research goals: A greater proportion

of the total sample might be measured at the early waves, a

constant proportion might be measured at each wave, or a

greater proportion might be measured at certain key time

points. The optimal assignment of missingness to measure-

ment occasions depends on the research questions and the

analysis models.

Although wave missing designs have been studied via

simulation (Graham, Taylor, & Cumsille, 2001; Mistler &

Enders, 2012; Rhemtulla, Jia, Wu, & Little, 2014; Wu, Jia,

Rhemtulla, & Little, 2015), planned wave missing designs

do not yet appear to have been implemented in educational

research. Wave missingness does, however, routinely arise

in educational research as a consequence of restructuring

data from other popular designs (e.g., accelerated longitudi-

nal designs and test–retest designs), as we hope to make

clear next. These data configurations do not constitute true

planned missing data designs because participants are not

randomly assigned to missing data patterns, but they share

many characteristics. We begin this section by considering

some of these configurations in which complete data

designs can be transformed into quasi-planned-missing

designs; we term this configural wave missingness. Then

we describe the research on planned wave missing designs

and discuss how these designs could be applied to educa-

tional research.

CONFIGURALWAVE MISSINGNESS

Accelerated longitudinal designs combine the benefits of

cross-sectional and longitudinal designs by tracking several

cohorts over a short time span (Bell, 1953). The resulting

data have an overlapping configuration that facilitates infer-

ences regarding longitudinal change over a time span longer

than the duration of the study. For example, Poteat,

O’Dwyer, and Mereish (2012) investigated the trajectory of

adolescents’ use of homophobic epithets through high

school. Six overlapping cohorts of students (i.e., those in

Grades 7–12) were measured on four occasions over 2 years.

The resulting data were stretched out and overlapped to get,

effectively, a spliced-together picture of the developmental

trend from beginning to end of high school. Table 4 depicts

their research design in terms of data collection and analysis,

whereby 2 years of data collection are stretched out to cover

a 5-year developmental change trajectory.

Accelerated longitudinal designs are not true planned

missing designs because participants are not randomly

assigned to cohorts. As such, cohort effects can arise when

not all cohorts conform to the same change trajectory.

Miyazaki and Raudenbush (2000) gave an example of an

accelerated longitudinal design in which cohort effects

were present. They identified seven cohorts of participants

in the National Youth Survey according to their age at the

survey’s onset (11–17 years), each of which was followed

for the 5-year duration of the study. In total, these data

described longitudinal change from 11 to 21 years in
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attitudes favorable toward deviant behavior. Their analyses

revealed significant differences among the cohort trajecto-

ries, such that older cohorts showed less steep increases in

favorability than younger cohorts. The authors noted that

the more overlap between the cohorts (e.g., each cohort in

the NYS data overlapped with another cohort on 4 of

5 years), the higher the power to find such differences. If

statistically significant cohort effects do exist, then infer-

ences about change, including predictors of change, cannot

necessarily be generalized across all cohorts. That said,

Mizayaki and Raudenbush also argued that accelerated

designs have several advantages over true longitudinal

designs, including that they accrue less attrition; that age

and history effects can be disentangled; and that contamina-

tion associated with frequent repeated measurements of true

longitudinal designs, especially if the time points are close,

can be mitigated.

Similar to accelerated longitudinal designs, wave-to-age

restructuring of longitudinal designs takes data collected at

a number of fixed waves (e.g., Grades 1–4) and restructures

them into a set of variables that reflect students’ ages (e.g.,

ages 6–10) instead of grade level. The resulting data set

looks very similar to that of the accelerated longitudinal

design, but instead of discrete cohorts the missing data pat-

terns now correspond to different ages of students relative

to their classmates. Beyond wave and age, data can also be

restructured according to alternative metrics of time, such

as months or half years (e.g., to model more narrow age

ranges), stages of development, or number of hours of

instruction on a task (Bollen & Curran, 2006).

Finally, test–retest designs can be another source of con-

figural wave missing data when the data are reconfigured to

account for the time lag between the initial test and retest.

McArdle and Woodcock (1997) described a scenario in

which students were given a test–retest memory assessment

during which they learned picture–name associations at the

initial test and were asked to recall these associations dur-

ing a retest occurring 1 to 8 days later. Although it would

be possible to analyze these data by ignoring the differential

time lag between test and retest, such an analysis would fail

to take advantage of the potentially rich information that

can be extracted from the time lag data. Table 5 shows how

the data can be restructured to look like a planned missing

design in which all participants are measured at baseline

(t0) and at one other time point (t1–t8). Structuring the data

in this way allows the researcher to model a change trajec-

tory over the course of time (in this case, 8 days), and even

to disentangle the effect of time from the effect of practice

(McArdle & Woodcock, 1997).

PLANNEDWAVE MISSINGNESS

In planned wave missing designs, participants are randomly

assigned to a particular pattern of missing data across the

waves of a longitudinal study. In contrast to the configural

wave missing designs described in the previous section,

planned wave missing designs allow the researcher to choose

patterns of missingness that lead to efficient parameter esti-

mation while controlling cost and considering the effects of

repeated measurement. Planned wave missing designs have

several benefits over configural wave missing designs. First,

because the patterns of missingness are randomly assigned,

they cannot be related to meaningful effects in the data, such

as cohort or age effects. Second, whereas accelerated longitu-

dinal designs and wave-to-age transformations tend to create

a lot of missing data at the first and last measurement occa-

sions, planned wave missingness allows the missing data to

be concentrated in the middle waves, leading to more stable

estimation of linear and quadratic growth trajectories (Gra-

ham et al., 2001; Mistler & Enders, 2012).

TABLE 4

Accelerated Longitudinal Design

Data Collection Analysis

Cohort Year 1 Year 2 Grade 7/8 Grade 9 Grade 10 Grade 11 Grade 12

1 Grade 7/8 Year 2

2 Grade 7/8 Grade 9 Year 1 Year 2

3 Grade 9 Grade 10 Year 1 Year 2

4 Grade 10 Grade 11 Year 1 Year 2

5 Grade 11 Grade 12 Year 1 Year 2

6 Grade 12 Year 1

TABLE 5

Developmental Time-Lag Design

Time Point

t0 t1 t2 t3 t4 t5 t6 t7 t8

test retest

test retest

test retest

test retest

test retest

test retest

test retest

test retest
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Latent growth curve models are an especially important

context for these types of data designs. Such models allow

researchers to examine the nature of, individual differences

in, and determinants of change over time. Jordan, Kaplan,

and Hanich (2002), for example, studied the growth trajecto-

ries in math and reading achievement at four data collection

waves across Grades 2 and 3 and found different growth tra-

jectories for students with learning difficulties in math and

reading. With regard to the effect of different patterns of

wave missingness on the efficiency of parameter estimates

in latent growth curve models, Graham et al. (2001) consid-

ered a linear growth trajectory with five measurement occa-

sions, where the linear slope was predicted by a program

versus control grouping variable. They compared several

missingness patterns with respect to the efficiency of the

slope-on-group regression coefficient. Their most efficient

design had no missing data on the initial occasion, 30%

missing data on the last occasion, and 50% missing data on

the middle three occasions, for a total of 36% missing data.

This design resulted in the same power to detect the regres-

sion effect as a complete data design would have with 83%

of the participants. Mistler and Enders (2012) considered the

effectiveness of similar designs in estimating the slope mean

in linear and quadratic growth curve models, as seen in

Table 6. These authors found that designs with missing data

confined to the middle measurement occasions produced

more efficient estimates than those that also included miss-

ing data on the first and last occasions. The results of these

two studies together suggest that the end points of a curve

may contain more information than the middle points when

estimating a growth trajectory.

Rhemtulla et al. (2014) examined the effect of wave

missing designs on multivariate latent growth curve models

(McArdle, 1988). In these models, researchers may investi-

gate whether the rate of change in one construct over time

(e.g., vocabulary acquisition) is correlated with the rate of

change of another construct (e.g., reading frequency) by

modeling multiple growth curves simultaneously. The

authors considered the most flexible growth pattern in

which the shape of the growth trajectory is freely estimated

(as opposed to fixing a linear or quadratic rate of change), a

so-called unspecified trajectory (e.g., Hancock, Harring, &

Lawrence, 2013). In a simulation study, wave missingness

was imposed according to the optimal pattern reported by

Graham et al. (2001), and bias, efficiency, and power were

compared to a complete data design. In contrast to the

results of Graham et al. and Mistler and Enders (2012),

Rhemtulla et al. found that the efficiency loss that resulted

from imposing wave missingness was often greater than it

would have been under a complete data design with reduced

sample size. With 36% missing data in the wave missing

design, standard errors of the slope parameter estimates (i.e.,

slope means, variances, and covariance) were less than 50%

as efficient as with complete data. The authors concluded

that wave missing designs should be used with caution if the

rate and shape of change, and correlations among the rates

of change, are desired. These findings are particularly con-

cerning in light of research suggesting that tests of slope

covariances tend to be extremely underpowered even with

complete data (Hertzog, Lindenberger, Ghisletta, & von

Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Linden-

berger, 2008). More methodological research is clearly

needed to reconcile these various findings.

It is important to keep in mind that each of the aforemen-

tioned findings is specific to the parameters and models that

were studied. Other model parameters and other models

would be expected to have a different optimal missingness

pattern. For example, a growth process that is characterized

by a spline function (e.g., two linear functions connected at a

transition point) relies heavily on information at the point

where the change in direction happens. To reliably estimate

the shape of change, a planned missing design would ideally

have complete data at the point of change, with missingness

distributed among other time points (Hogue, Pornprasertma-

nit, Fry, Rhemtulla, & Little, 2013). For education research-

ers examining the transition from middle school to high

school, for example, where a spline model would seem espe-

cially appropriate to capture potentially abrupt trajectory

changes, collecting complete data around the eighth-grade to

ninth-grade transition point would be well advised.

Wu et al. (2015) proposed an algorithm that searches for

the most efficient pattern of planned missing data for each

parameter in a given model. When planning research with a

particular analysis in mind, the algorithm simulates

data based on initial estimates of the relations among varia-

bles, imposes a wide range of missingness patterns, and

compares the results in terms of the efficiency of each

parameter estimate. This tool may be useful for researchers

who have a precise idea of what analyses they plan to run

and which parameters will be of greatest interest.

TWO-METHOD MEASUREMENT DESIGNS

A third and potentially very useful planned missing data

design, the two-method measurement design, was proposed

TABLE 6

Wave Missing Designs for Linear and Quadratic Growth

Measurement Occasion (Wave)

Group 1 2 3 4 5 6

A

B

C

D

E

F

Note. This table represents an example of the type of design discussed

by Mistler and Enders (2012). Gray is missing data; white is complete data.
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by Graham et al. (2006) for a very specific situation. Imag-

ine that a researcher has access to two types of measures of

a construct—one of these is a gold-standard, which is unbi-

ased but expensive in cost and/or effort (e.g., a direct obser-

vation of student attentiveness), and the other is a

systematically biased and typically more error laden, but

quick and less expensive, approximation (e.g., teacher-

report of student attentiveness). Data are gathered on the

set of inexpensive measures, whereas only a fraction of the

participants are randomly assigned to receive the gold stan-

dard measure(s) as well. The motivating idea behind two-

method measurement is that including an excellent but

expensive type of measure within a small subset of the

larger sample allows the degree of bias in the inexpensive

measures to be calibrated and thus statistically controlled.

Bias is modeled using a structural equation model that sepa-

rates latent bias from the latent construct.

Consider the model shown in Figure 1, where the goal is

to assess the effect of classroom attentiveness in Grade 1 on

children’s reading achievement in Grade 2. Three of the

classroom attentiveness measures are direct assessments,

observing children in the classroom over strategically cho-

sen periods; the other two measures are less reliable and

potentially biased teacher reports. Using the observational

assessments alone, although ideal, would be prohibitively

costly and as such lead to a small sample size and inade-

quate power to assess the impact of classroom attentiveness

on reading achievement. On the other hand, using the

teacher measures alone would be expected to confound the

desired construct of classroom attentiveness with a method

construct (we simply refer to this as teacher-report bias),

yielding an inaccurate evaluation of the key structural rela-

tion of interest. Hence, it is desirable to parse the teacher-

report bias method factor from classroom attentiveness so

that the effect of the latter on the subsequent reading

achievement score may be accurately assessed. This may

be accomplished using a model such as that shown in Fig-

ure 1, where 125 students are randomly assigned to have

all four measures gathered and an additional 375 students

are randomly assigned to have only the inexpensive meas-

ures gathered. Together, the gold standard measures help to

purge classroom attentiveness of the reporting bias inherent

in the teacher-report measures, whereas the additional sub-

jects receiving only the teacher-report measures help to

increase the power to detect the now accurately calibrated

relation between classroom attentiveness in first grade and

reading achievement in second grade.

It should be emphasized that the most important aspect

of two-method measurement is that the inexpensive mea-

sure is a systematically biased measure of the same con-

struct that is assessed by the expensive measure. In the

context of education research, the expensive measure will

often be a direct assessment or observation, whereas the

inexpensive measure could be a paper-and-pencil or com-

puter-based measure. Examples might include an individu-

alized administration of the Wechsler Intelligence Test for

Children versus a written intelligence test, or an intensive

repeated observation of classroom aggression versus a

teacher report. This means that the two measures must mea-

sure the same thing (i.e., a single underlying trait, aptitude,

or characteristic gives rise to both these measures), and the

inexpensive measure must be contaminated by some kind

FIGURE 1 Structural equation model for two-method measurement design data.

PLANNEDMISSING DATA DESIGNS 313



of systematic measurement bias (e.g., self-report bias). If

the inexpensive measure is unreliable but not systematically

biased, it will typically be more efficient to use only the

inexpensive measure and gather data on a larger sample. As

for the relative amount of each type of data needed, useful

insights into the trade-offs in terms of the measures’ cost

ratio and reliability are provided by Graham et al. (2006)

and Graham (2012).

LOOKING AHEAD

For researchers considering employing planned missing-

ness designs, two final issues are worth mentioning: deter-

mining adequate sample size, and combining multiform

and two-method measurement designs with designs that

impose missingness over multiple time points. First, as

with all studies, one should be able to determine the sample

size needed to have adequate statistical power. A compli-

cating factor of planned missing data designs is that routine

power analysis methods for sample size planning cannot

easily be applied. Calculations based on complete data

must be adjusted to account for missing data, but this

adjustment is not straightforward; as mentioned earlier, the

power to test the statistical significance of a particular

parameter estimate depends on the covariance structure of

the data (i.e., the strength of relations among variables), the

pattern of missing data, and the missingness mechanism.

Perhaps the most direct way to estimate power accurately,

taking all these factors into account, is to use a Monte Carlo

simulation approach (see, e.g., Enders, 2010), which can be

done in software such as Mplus (Muth�en & Muth�en, 1998–
2016) and the open-source software R (R Core Team, 2015).

This method has five steps: (a) specify a hypothesized popula-

tion, including all model parameter values; (b) draw a large

number of samples of some arbitrarily chosen size N from

this hypothesized population; (c) impose the proposed pattern

of planned missing data on each sample; (d) carry out an

alpha-level significance test for a given parameter of interest

within each sample (e.g., a test of a regression coefficient, or

a test of model fit); and (e) count the proportion of samples in

which the test returned a statistically significant result—this

value represents an estimate of power for samples of size N.

The procedure then cycles repeatedly, trying different sample

sizes until achieving a desired level of power (e.g., .80). The

whole method is then repeated in turn for each of the other

parameters of interest, ultimately choosing the largest of the

resulting sample sizes across all key parameters.

A further benefit of the simulation approach to sample

size planning is that it is fully flexible with respect to not

only planned missing data patterns but also foreseeable

unplanned missingness. For example, a researcher planning

a four-wave study with wave missingness could investigate

the effect of attrition in addition to the planned missingness.

Based on previous substantive research in her field, this

researcher could evaluate whether she would still have

acceptable power with 10%, 20%, or 30% attrition, with

results possibly persuading her to increase her sample size

and/or to use less planned missing data.

The second issue to be mentioned as we look ahead has

to do with the designs themselves. So far we have addressed

designs that impose missingness patterns at a single time

point, including multiform and two-method measurement

designs, and designs that impose missingness over multiple

time points, including accelerated longitudinal and more

general wave missing designs. Although not common, one

could, in fact, draw upon aspects of multiple such designs

simultaneously, should it be useful to balance cost and effi-

ciency. Reitz et al. (2015), for example, studied adolescent

sexual development over 2 years, with four waves of data

each 6 months apart. The authors implemented a three-

form design in the initial two time points and collected

complete data at the last two time points, the latter helping

to mitigate the loss of power due to attrition over time.

Because participants ranged in age from 10 to 18 at the

study onset, this design would support an accelerated longi-

tudinal analysis of the data in which a continuous develop-

mental trajectory from ages 10 to 18 could be modeled. As

another example, Garnier-Villarreal, Rhemtulla, and Little

(2014) considered a longitudinal extension of the two-

method measurement design, in which the inexpensive/

biased measure was administered over four waves of data

collection and the expensive measure was included at one,

two, or all four occasions. Simulations revealed that, as

long as the degree of measurement bias was about the same

at each measurement occasion, including the expensive

measure at just the first occasion was enough to get the

accuracy and efficiency benefits of two-method measure-

ment approach.

The two examples just presented help to illustrate the

tremendous potential for planned missing designs, whereby

clever adaptations can save research expense while ensur-

ing the validity of, and statistical power necessary to

detect, relations of key research interest. We look forward

to the many interesting methodological developments to

come, and more important their informative implementa-

tions within the education and educational psychology

literature.
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