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6–7 categories, results were similar across methods for many conditions; in these cases, either method
is acceptable.
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Confirmatory factor analysis (CFA) models are among the most
popular types of structural equation models (SEMs) in psychology
(Crowley & Fan, 1997; Marsh & Hau, 2007; Martens, 2005). A
CFA model hypothesizes linear relationships between the ob-
served variables y and the latent factors f, specified by a set of
latent regression equations y � �f � ε, where � is the matrix of
factor loadings and ε is an error term containing both measurement
error and item-specific variance in the observed indicators.

Classic estimation methods in SEM, such as normal theory
maximum likelihood (ML), are based on the assumption that the
observed variables are measured on a continuous scale. When both
indicators and factors are assumed to have continuous distribu-
tions, a standard CFA model that hypothesizes a set of linear
regressions of observed indicators on latent factors is plausible.
However, researchers often have to work with observed variables

that can only take a limited number of values. This is especially
true in the social sciences, where psychological constructs such as
attitudes are frequently measured on Likert scales (e.g., strongly
disagree, disagree, agree, strongly agree) and cognitive tests are
frequently measured with binary (correct/incorrect) responses.

Because responses on ordinal variables are typically coded
numerically in ascending order, it is easy for researchers to ignore
the categorical nature of the variables and to treat them as contin-
uous, applying continuous normal theory ML to estimate model
parameters. However, this approach can lead to biased parameter
estimates, as well as incorrect standard errors and model test
statistics, especially when the number of categories is small (e.g.,
Johnson & Creech, 1983). This is because the standard continuous
CFA model is fundamentally misspecified when applied to ordinal
variables, which cannot be linear functions of continuous factors.
This bias becomes smaller as the number of categories becomes
larger, because the variables approach continuity.

The theoretically correct alternative to normal theory ML is to
treat ordinal variables directly as ordinal. In order to reconcile the
linear CFA model with the ordinal nature of the variables, one of
two assumptions must be made: (a) that underlying each categor-
ical variable y is a normally distributed continuous variable y�,1

and the CFA model describes the relationship between y� and the
latent factors f (e.g., B. O. Muthén, 1993; B. O. Muthén, du Toit,
& Spisic, 1997); or (b) that the model relating the probability of the
observed responses y to the values of the latent factors f is a

1 More precisely, we assume that the y�s are jointly normally distributed.
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generalized linear model with an ordered probit (or an appropri-
ately scaled logit) link function (e.g., Baker & Kim, 2004; Bar-
tholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004). The
first set of assumptions is more commonly made for categorical
SEM methods, which are limited information methods that rely on
polychoric correlation estimates. The second set of assumptions is
primarily used for item response theory (IRT) methods, which are
full information methods using raw categorical variables. How-
ever, these two sets of assumptions are mathematically equivalent
(B. O. Muthén & Asparouhov, 2002; Takane & de Leeuw, 1987;
Wirth & Edwards, 2007). For instance, a correct/incorrect response
on a test item can be thought of as a so-called artificial dichotomy
(Pearson, 1900, 1904) because one can hypothesize that underly-
ing this response is the continuous variable of topic knowledge.
Equivalently, one can posit that the probability of the correct
response on this test item depends on the person’s score on the
underlying latent factor of “ability” via the probit link function. In
psychology, the existence of underlying continuous variables is a
common assumption when analyzing categorical variables, and
this is the paradigm adopted in the present article. However, this
assumption is not strictly necessary to apply categorical method-
ology, and a probit link function assumption can be invoked
instead (B. O. Muthén, 2003; B. O. Muthén & Asparouhov, 2002).

There are several different methods for fitting latent variable
models to data containing ordinal variables. As already mentioned,
the most significant distinction is between full information and
limited information methods (e.g., Maydeu-Olivares & Joe, 2005).
Full information methods model the entire multivariate categorical
distribution of the observed variables, or, equivalently, they use
subjects’ entire response pattern to extract information about
model parameters (MML; Bock & Aitkin, 1981; Bock, Gibbons, &
Muraki, 1988; Bock & Lieberman, 1970). Since the models are
equivalent (Takane & de Leeuw, 1987), conversion formulas from
IRT parameters to CFA parameters are readily available. Wirth
and Edwards (2007) provided an excellent overview of modern
developments and challenges in the area of full information cate-
gorical estimation methods.

Limited information methods, on the other hand, only use the
low order margins (typically, univariate and bivariate frequencies)
to estimate model parameters, losing information available in
higher order frequencies (e.g., the joint probability of three vari-
ables at once is not modeled). These methods typically make the
“underlying continuous variable” assumption. They proceed by
first estimating thresholds (values that divide the continuous dis-
tribution of y� into categories to obtain the categorized variable y)
and polychoric correlations (estimates of the correlations between
the continuous variables y�), either separately or simultaneously
(Christoffersson, 1975; Lee, Poon, & Bentler, 1990, 1995; B. O.
Muthén, 1978, 1984; Olsson, 1979a). The CFA model is then fit to
the matrix of polychoric correlations (Jöreskog, 1994; Lee et al.,
1990, 1995; B. O. Muthén, 1984, 1993).

Full information methods have a theoretical advantage over
limited information methods, in that they produce more efficient
parameter estimates because they use all of the information avail-
able in the data (Joe & Maydeu-Olivares, 2010; Maydeu-Olivares
& Joe, 2005, 2006). However, this theoretical advantage does not
often appear to translate into a practical advantage. In practice, the
advantage of full information methods is slight at best, and several
studies show that limited information methods perform as well or

better in practice. For binary items, a frequently cited reference is
Knol and Berger (1991), who state that “for multidimensional data
a common factor analysis on the matrix of tetrachoric correlations
performs at least as well as the theoretically appropriate multidi-
mensional item response models” (p. 457). Forero and Maydeu-
Olivares (2009) conducted the most recent and thorough Monte
Carlo comparison of full- and limited-information methods to date
and found that the differences between the methods were negligi-
ble in most conditions, with limited-information methods produc-
ing slightly better parameter estimates and full-information meth-
ods producing slightly better standard errors. In their excellent
review of the relevant literature, they also note that their finding is
consistent with most previous research.

The research question explored in the present study is as fol-
lows: In the context of CFA model estimation with ordinal data,
how many categories are necessary before continuous methodol-
ogy performs as well categorical methodology? In this study, a
limited information categorical method is used for comparison to
the continuous methodology. Given small differences between
limited- and full-information methods, this choice is unlikely to
affect our conclusions about the number of categories for which
continuous methodology begins to perform comparably to cate-
gorical methodology. There are additional practical reasons to
prefer limited information estimation. The computational burden
of full information methods can be substantial, particularly when
there is more than one latent factor. Full information categorical
methodology is not available in all SEM programs (to our knowl-
edge, only in Mplus and Mx), and thus psychology researchers
unfamiliar with IRT software may not have access to it. Finally,
full information model test statistics tend to perform extremely
poorly given the frequently sparse nature of the full contingency
tables (Joe & Maydeu-Olivares, 2010; Maydeu-Olivares & Joe,
2005, 2006).2 In contrast, if continuous and limited-information
categorical methodology is accompanied by the appropriate robust
corrections to standard errors and test statistics, as is done in this
study, test statistics are easily available for both continuous and
limited-information categorical methods (Maydeu-Olivares & Joe,
2005, 2006; B. O. Muthén, 1993; Satorra & Bentler, 1994), and
they are directly comparable (their degrees of freedom are the
same). We now describe the particular methods studied in more
detail.

Limited Information Categorical Estimation Methods
With Robust Corrections

The limited information categorical method used in this study is
the categorical least squares (cat-LS) method with robust correc-
tions to standard errors and test statistics. Related limited infor-
mation methods are also described for context. As already men-
tioned, limited information methods typically proceed by first
estimating variables’ thresholds and polychoric correlations. Pa-
rameter estimates of the CFA model are then obtained by fitting
this model directly to the matrix of polychoric correlations. The
estimation procedure used to fit the CFA model to the matrix of
polychoric correlations distinguishes the various limited informa-

2 In fact, Mplus does not print the full information test statistic when
variables have more than four categories.
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tion methods and determines whether corrections are necessary to
the default standard errors and test statistic.

The oldest in this family of methods, categorical weighted least
squares (cat-WLS), uses the inverse of the estimated covariance
matrix of polychoric correlations, V̂�1, as the weight matrix in
estimation (e.g., B. O. Muthén, 1978, 1984). Let � (�) represent the
structure of the correlation matrix3 under the CFA model, and let
r represent the p (p � 1)/2 � 1 vector of polychoric correlation
estimates, where p is the number of variables. Then, cat-WLS obtains
CFA model parameter estimates �̂ by minimizing Fcat�WLS � (r �
�(�))�V̂�1(r � �(�)). Standard errors are obtained from the diag-
onals of the asymptotic covariance matrix of �̂, given by
(	̂�V̂�1	̂)�1, where 	̂ is the matrix of model derivatives evaluated
at the parameter estimates. The test statistic is Tcat�WLS � (N �
1)Fcat�WLS(�̂), where N is sample size; this statistic is asymptot-
ically chi-square distributed when the model is true. Note that
different software programs may implement this approach slightly
differently (Jöreskog, 1994; Lee et al., 1990, 1995; B. O. Muthén,
1984, 1993; B. O. Muthén et al., 1997). The cat-WLS method is
asymptotically efficient within the class of categorical data meth-
ods relying on polychoric correlations.4 Cat-WLS is conceptually
similar to the asymptotically distribution free estimation method
for continuous data (Browne, 1984) and similarly breaks down
unless the sample size is very large (DiStefano, 2002; Dolan, 1994;
Flora & Curran, 2004; Hoogland & Boomsma, 1998; Lei, 2009;
Maydeu-Olivares, 2001; Potthast, 1993; Yang-Wallentin, Jöres-
kog, & Luo, 2010).

The recommended limited information categorical estimation
methods for small to medium samples are diagonal weighted least
squares (cat-DWLS) and least squares (cat-LS, a.k.a., unweighted
least squares).5 These methods are more stable than cat-WLS in
smaller samples because they do not require inverting V̂ (Flora &
Curran, 2004; Maydeu-Olivares, 2001). Because both of these
methods are less efficient than cat-WLS, they require robust cor-
rections to the standard errors and test statistics (B. O. Muthén,
1993; B. O. Muthén et al., 1997; Satorra & Bentler, 1994). Cat-LS
obtains model parameter estimates �̃ by minimizing the LS fit
function Fcat�LS � (r � �(�))�(r��(�)). Default standard errors
are no longer accurate, and the correct covariance matrix of �̃ is the
robust covariance matrix: (	̃�	̃)�1 	̃�V̂	̃(	̃�	̃)�1. The “naı̈ve” test
statistic Tcat�LS � (N � 1)Fcat�LS(�̃) is also no longer appropriate,
as it is not chi-square distributed. Two popular adjustments to the
test statistic exist: the mean-corrected (scaled) chi-square and the
mean-and-variance corrected (adjusted) chi-square (B. O. Muthén,
1993; Satorra & Bentler, 1994). With categorical variables, the
adjusted chi-square appears to perform better (Maydeu-Olivares,
2001). For cat-LS, the adjusted chi-square is computed as

Tcat�MV �
tr
ŨV̂�

tr
ŨV̂ŨV̂�
Tcat�LS, where Ũ � I � 	̃(	̃�	̃)�1	̃�. It is

referred to a chi-square distribution with k �
�tr
ŨV̂�2

tr
ŨV̂ŨV̂�
degrees

of freedom, rounded to the nearest integer. The mean and variance
of this statistic match those of a chi-square distribution with k
degrees of freedom when the CFA model is correct.6 Note that the
robust corrections still require the computation of V̂, but not its
inverse. The equation for the mean-corrected chi-square Tcat-M is
omitted, as we do not study it in the present article.

The cat-DWLS estimator is similar to cat-LS except that it
minimizes a weighted sum of squares, Fcat�DWLS � (r �
�(�))�D̂�1(r � �(�)), where D̂ is a diagonal matrix with elements
of V̂ on the diagonal. Robust corrections for cat-DWLS are simi-
larly defined; these formulas are not presented here.7 Recent
evidence suggests that cat-LS performs better than cat-DWLS in
terms of estimated parameter values, standard errors, and cover-
age, although it may exhibit lower convergence rates in some
conditions (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009).
Differences between cat-LS and cat-DWLS are generally small
(Yang-Wallentin et al., 2010).

It is worth emphasizing that the robust corrections to standard
errors that accompany cat-LS and cat-DWLS methods are correc-
tions for loss of efficiency due to the fact that full cat-WLS
estimation was not performed. It is sometimes mistakenly stated
that robust corrections accompanying cat-LS and cat-DWLS allow
for relaxing of the assumption that underlying observed categorical
variables are a set of normally distributed continuous variables—
that is, that robust corrections somehow adjust for the possible
nonnormality in the underlying continuous variables (Savalei, in
press). This is false; robust corrections accompanying categorical
estimators still require the assumption that the underlying contin-
uous variables are normally distributed (or equivalently, that ob-
served categorical variables and latent factors can be connected via
ordered probit regression). The confusion likely stems from the
fact that the original development of the robust corrections (Sa-
torra & Bentler, 1988, 1994) was to adjust for loss of efficiency in
the continuous normal theory ML estimator due to nonnormality in
the data.

3 In CFA models, the mean structure (with continuous data) or the
threshold structure (with categorical data) is saturated and is not explicitly
modeled. In multiple group models, the model may be expanded to include
a vector of thresholds and the correlation matrix (e.g., Millsap & Yun-Tein,
2004).

4 The cat-WLS method is still less efficient than full information cate-
gorical methods, because those methods use information from the entire
p-variate contingency table of the data, not just the first- and second-order
marginals. What is meant here is that cat-WLS is more efficient than
cat-LS or cat-DWLS, or any other method that uses a weight matrix that is
not a consistent estimate of V�1.

5 It is also possible to fit a model to the polychoric correlation matrix
using normal theory ML or generalized least squares (GLS) fit functions,
but rates of nonconvergence and improper solutions are higher (Lei, 2009;
Rigdon & Fergusson, 1991), and these methods additionally require a
positive definite input matrix. See, however, Yuan, Wu, and Bentler (2011)
and Bentler and Yuan (2011) for new solutions to this problem.

6 In Mplus, cat-ULS with robust standard errors and the mean-and-
variance adjusted test statistic is activated by ESTIMATOR � ULSMV. In
EQS, cat-ULS is activated by METHOD � LS, ROBUST. In LISREL, it
is necessary to first compute the polychoric correlation matrix in PRELIS
(MA � PM), which is then used as input to the LISREL program. ULS is
specified using ME � UL. In all programs, variables must to be declared
to be categorical.

7 In Mplus, cat-DWLS with the mean-and-variance adjusted test statistic
is activated by ESTIMATOR � WLSMV. In LISREL, it is activated using
ME � DW. This method is not available in EQS.
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Continuous Normal Theory ML With Robust
Corrections

In this study, we compare cat-LS with robust corrections to
the most popular continuous data estimation method, normal
theory ML, accompanied by robust corrections for nonnormal-
ity (Satorra & Bentler, 1994). It is a good practical strategy to
apply robust corrections to normal theory ML when variables
are categorical, because these variables are, by definition, non-
normal. Any categorical variable is nonnormal by virtue of
being discrete rather than continuous. Categorical variables are
likely to produce nonzero kurtosis estimates, depending on the
frequency of the middle categories, and category asymmetry
will further lead to nonzero skewness. Robust ML is a covari-
ance structure method and thus begins with obtaining the sam-
ple covariance matrix of the data, S, ignoring the categorical
nature of the data. Standardizing S would yield the matrix of
Pearson product-moment correlations. Let �(�) represent the
structure of the covariance matrix under the CFA model. Then,
normal theory ML obtains CFA model parameter estimates �̆ by
minimizing the fit function FML � tr{��1 (�)S} � ln ���1(�)S � �
p. While this equation is not very intuitive, asymptotically (in large
samples) it can be written as a quadratic form in model residuals with
the weight matrix W̆, called the normal-theory weight matrix. The
correct standard errors when the data are continuous but nonnormal
are obtained from the robust covariance matrix:
(	̆�W̆�1	̆)�1	̆�W̆�1�̆W̆�1	̆(	̆�W̆�1	̆)�1, where �̆ is an estimate of
the fourth-order moments matrix of the raw data (see Bentler, 2008,
for a definition of the typical element of this matrix). The default test
statistic, TML � (N � 1)FML(�̆), is no longer valid when data are
nonnormal. The same two adjustments, the scaled and the adjusted
test statistics, can be computed instead. With continuous nonnormal
data, the mean corrected (scaled) chi-square is the most popular
statistic (Satorra & Bentler, 1994). This statistic, computed as

TML�M �
df

tr
Ŭ�̆�
TML, where Ŭ � W̆�1 � W̆�1	̆(	̆�W̆�1	̆)�1	̆W̆�1,

is referred to a chi-square distribution with df degrees of freedom,
although it only approximates this distribution in the mean. The
mean-and-variance corrected (adjusted) chi-square for continuous

nonnormal data is computed as TML�MV �
tr
Ŭ�̆�

tr
Ŭ�̆U�̆�
TML and is

referred to a chi-square distribution with k �
�tr
Ŭ�̆�2

tr
Ŭ�̆U�̆�
degrees of

freedom, rounded to the nearest integer (B. O. Muthén, 1993).
Normal theory ML with robust corrections for nonnormality is

based on the assumption that observed data are continuous, albeit
nonnormal. Parameter estimates �̆ obtained by minimizing FML

will be biased downward when the data are categorical, because a
variable with a limited number of possible values (e.g., the integers
1 through 4) will necessarily be more weakly related to a latent
factor than if it were measured continuously (Bollen & Barb, 1981;
Olsson, 1979b). Thus, under the assumption that continuous vari-
ables underlie the observed categorical variables, the matrix of
Pearson product-moment correlations will be an underestimate of
the correlation matrix among the underlying continuous variables.
Equivalently, under the alternative assumption that each categor-
ical variable is related directly to the latent factors via an ordered
probit (or logit) link function, negatively biased estimates will
result from the fact that continuous methodology assumes a linear

relationship between the variables and the factors, whereas the true
link is probit. Thus, given either assumption, the relation between
variables and factors is misspecified, and the resulting estimates
will be biased. As the number of categories per variable increases,
variables approach continuity, and this bias decreases.

Goals of the Present Study

Researchers often use continuous methods such as normal the-
ory ML in spite of the variables’ categorical nature. While it is
theoretically incorrect to do this, researchers usually work under
the assumption that, given a sufficiently large number of catego-
ries, categorical variables are sufficiently similar to continuous
variables to produce good results. While several studies have
explored the question of how many categories are enough to treat
categorical variables as continuous, the advent of robust correc-
tions for both continuous and categorical estimation warrants a
reassessment of this issue. No study has yet compared the perfor-
mance of continuous and categorical estimation methods with their
respective robust corrections, and a thorough investigation of this
question will allow researchers to decide which of the most current
methods is best for their data.

The main goal of the present study is to provide this much-
needed comparison. We compare robust ML, a continuous meth-
odology with corrections for nonnormality that is widely used and
performs well under a variety of circumstances, to robust cat-LS,
one of the best currently available categorical methodologies
(Forero et al., 2009; Yang-Wallentin et al., 2010) that provides
correct standard errors and test statistics. A secondary aim of our
investigation is to evaluate the relative performance of the two
methods in conditions that generally pose difficulties for estima-
tion or violate the underlying assumptions of both methods. To this
end, we included a range of conditions including different sample
sizes, model sizes, and varying levels of category threshold asym-
metry. Additionally, categorical variables were generated by cat-
egorizing underlying normal as well as nonnormal distributions. In
the condition where the underlying continuous variables are non-
normal, cat-LS should also result in biased parameter estimates.
The comparison between cat-LS and ML is particularly interesting
in this case, as both methods are wrong but one may do better than
the other. We compare the relative performance of cat-LS and
normal theory ML parameter estimates, the quality of robust
standard errors, and the rejection rates of the adjusted test statis-
tics. The results of this investigation will provide an answer to the
question of how many categories are enough to treat data as
continuous that is sensitive to the characteristics of a particular
data set.

Literature Review

Relative Performance of Continuous and Categorical
Estimators

A number of studies have examined the performance of contin-
uous and/or categorical estimators with ordinal data. We first
summarize studies that did not apply robust corrections to standard
errors and test statistics. Only the quality of parameter estimates is
therefore relevant to the present investigation.
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Several studies that have included continuous ML estimation (of
either product-moment correlation matrices or covariance matri-
ces) have found parameter estimates to be underestimated when
the number of categories is very small (e.g., two to three). This
bias tends to diminish as the number of categories increases, such
that when the number of categories reaches four or five, most
studies pronounce ML parameter estimates to be accurate (Beau-
ducel & Herzberg, 2006; DiStefano, 2002; Dolan, 1994; Johnson
& Creech, 1983; B. O. Muthén & Kaplan, 1985; but see Babakus,
Ferguson, & Jöreskog, 1987, and Dolan, 1994, for evidence that
even five categories may not be enough to eliminate bias in
continuous ML estimation). In addition, a number of studies have
assessed the performance of the limited information categorical
methods cat-DWLS and cat-LS with ordinal data; these have
tended to focus on variables with two or five categories. These
studies have found that in most situations, both methods lead to
unbiased parameter estimates (Beauducel & Herzberg, 2006;
Dolan, 1994; Flora & Curran, 2004; Forero et al., 2009; Lei, 2009;
B. O. Muthén et al., 1997; Nussbeck, Eid, & Lischetzke, 2006;
Rigdon & Fergusson, 1991; Yang-Wallentin et al., 2010).

Because several of the studies mentioned above were conducted
before robust corrections were readily available, they found, pre-
dictably, that uncorrected or “naı̈ve” standard errors were too small
and the uncorrected chi-square test statistic was inflated, for both
uncorrected ML and uncorrected categorical methodology. More
recent studies have investigated the performance of cat-DWLS and
cat-LS with robust corrections to standard errors. These have
reported very little bias in estimated standard errors (Flora &
Curran, 2004; Forero et al., 2009; Lei, 2009; Maydeu-Olivares,
2001; Nussbeck et al., 2006; Yang-Wallentin et al., 2010). Studies
that have compared cat-DWLS to cat-LS have either reported no
difference (Yang-Wallentin et al., 2010) or a slight advantage of
cat-LS over cat-DWLS (Forero et al., 2009; Maydeu-Olivares,
2001). To our knowledge, only one study has reported standard
errors resulting from robust continuous ML estimation of ordinal
items (DiStefano, 2002). This investigation found that robust ML
standard errors were negatively biased to a much smaller degree
than their nonrobust counterparts with five-category ordinal data;
however, considerable bias still appeared in certain conditions.

Comparing robust test statistics, Maydeu-Olivares (2001) found
that Tcat-MV outperformed Tcat-M in small samples (N � 100) with
both cat-DWLS and cat-LS. Several studies have found that
Tcat-MV based on the cat-DWLS estimator performs well with two-
and five-category data and a sample size of at least 200 (Flora &
Curran, 2004; Lei, 2009; B. O. Muthén et al., 1997; Nussbeck et
al., 2006). There is some evidence that Tcat-MV as used with
cat-DWLS may be robust to mild departures from underlying
normality (Flora & Curran, 2004) and that it is not affected by
category asymmetry (Lei, 2009; B. O. Muthén et al., 1997; Nuss-
beck et al., 2006; Yang-Wallentin et al., 2010).

Two studies have examined the performance of TML-M with
continuous ML estimation (DiStefano, 2002; Green, Akey, Flem-
ing, Hershberger, & Marquis, 1997). Both of these investigations
reported markedly better results with the scaling correction than
without it; however, in many situations even the scaled test statistic
did not adequately control Type I error. In particular, with fewer
than four categories and underlying nonnormal continuous distri-
butions, Tcat-M failed to control Type I error (Green et al., 1997).

Beauducel and Herzberg (2006) described the only study that
systematically compared continuous and categorical methodolo-
gies at a range of numbers of categories. These authors assessed
the relative performance of continuous normal theory ML and
cat-DWLS when CFA models were fit to data, varying model size
(one factor, five indicators to eight factors, 40 indicators), sample
size (from 250 to 1,000) and number of categories (two to six).
Results of this study tended to favor categorical methodology for
parameter estimation, except for the estimation of factor correla-
tions, which were consistently slightly overestimated with cat-
DWLS. The findings regarding standard errors and test statistics
are limited by the fact that robust corrections were applied to
cat-DWLS but not to continuous ML. Robust cat-DWLS standard
errors were smaller than those produced by ML; however, neither
type of standard errors was compared to the respective empirical
standard deviation of parameter estimates to evaluate accuracy.
Uncorrected ML Type I error rates were consistently too high.
Without a direct comparison of the performance of robust standard
errors and test statistics with both methods, it is difficult to decide
whether the small advantage of the categorical method in factor
loading estimation is sufficient to advocate its use with five or
more categories.

Factors Influencing Estimation

Finally, there are several factors that may especially influence
the relative performance of categorical and continuous methods
applied to ordinal data, such as variable category thresholds,
whether the continuous distributions underlying the observed cat-
egorical variables are normal, and model size. These factors are
manipulated in the present study. Research findings that address
the influence of these factors on estimation are summarized below.

Threshold variability. Several researchers have evaluated
the robustness of estimation techniques to the variability of thresh-
olds used to categorize underlying normal data. With both cate-
gorical and continuous estimation, parameter estimates tend to be
less accurate when category thresholds are distributed asymmetri-
cally around the mean (Babakus et al., 1987; DiStefano, 2002;
Dolan, 1994; Lei, 2009; Rigdon & Ferguson, 1991). There is some
evidence that continuous estimation methods may be more af-
fected by threshold asymmetry (Babakus et al., 1987; DiStefano,
2002); the correlation pattern created by items with varying thresh-
olds can result in spurious “difficulty factors” and create model
misfit (Bernstein & Teng, 1989; Ferguson, 1941). However, vary-
ing threshold conditions have received little attention in the liter-
ature, and it is presently unknown exactly how much impact
varying thresholds have on model estimation.

Several studies have found that uncorrected standard errors and
test statistics for cat-ML, cat-WLS, and cat-DWLS are affected by
asymmetrically distributed thresholds (e.g., Babakus et al., 1987;
Dolan, 1994; Potthast, 1993; Rigdon & Fergusson, 1991), but this
finding has no bearing on the performance of robust standard
errors and test statistics. Forero et al. (2009), found that highly
asymmetric thresholds (e.g., two-category data where more than
90% of the distribution fell into one category) led to negatively
biased robust standard error estimates with cat-DWLS, and to a
much lesser extent, cat-LS. Lei (2009) found that category asym-
metry had little effect on cat-DWLS robust standard errors, but it
led to higher Type I error rates for cat-DWLS versions of Tcat-M
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and Tcat-MV. Yang-Wallentin et al. (2010) used mildly asymmet-
rical category distributions and reported that category asymmetry
made no difference to parameter estimates, robust standard errors,
or robust test statistics under cat-LS or cat-DWLS. Finally, Green
et al. (1997) studied the performance of TML-M with asymmetric
category distributions and found its performance to be good across
a wide range of conditions, except when different items had widely
varying threshold distributions. Collectively, these studies suggest
that continuous and categorical estimation techniques may be
robust to mildly asymmetric threshold values but not extremely
asymmetric ones.

Underlying normality. When an ordinal item is obtained by
categorizing a nonnormal variable, it becomes impossible to re-
cover the underlying distribution.8 For example, a trait such as
sadness may be positively skewed, but if the binary item “I feel
sad” is endorsed by 50% of the sample, there is no way to
distinguish a skewed distribution with a low threshold from a
normal distribution with a threshold at its center. For this reason,
categorical estimation is typically implemented under the assump-
tion of underlying bivariate normality (or equivalently, of the
probit link function connecting the probability of each category
and the latent factors). When this assumption is violated, categor-
ical methods such as cat-LS and cat-DWLS may produce biased
parameter estimates, which will also affect standard errors and test
statistics.

Flora and Curran (2004) manipulated the type of continuous
distribution underlying the observed ordinal variables. They im-
posed one or four symmetric thresholds (to create two- or five-
category distributions, respectively) on simulated continuous dis-
tributions that were either normal or had skewness of up to 1.25
and kurtosis of up to 3.75. Using cat-DWLS with robust correc-
tions, they found that the estimated polychoric correlations and
model parameter estimates displayed increasing positive bias as
the underlying distribution became more skewed, though the ab-
solute level of bias remained low. In addition, the cat-DWLS
version of Tcat-MV had slightly higher Type I error rates with
increasing skew. This study did not, however, include continuous
estimation methods, so we cannot gauge the relative performance
of the two types of methods when the underlying normality as-
sumption is violated. Green et al. (1997) found that TML-M was
robust to most departures from underlying normality, including
both underlying uniform and skewed distributions. The one excep-
tion to this was when some items had an underlying positive skew
and others had an underlying negative skew; in this case, TML-M

tended to be too high. These authors did not investigate parameter
estimates or standard errors, nor did they examine categorical
estimation methods.

Model size. Most of the research cited above has manipulated
model size. The most pervasive effect of model size is simply that
larger models are harder to fit, resulting in higher rates of non-
convergence and improper solutions (e.g., Flora & Curran, 2004;
Yang-Wallentin et al., 2010; but see Forero et al., 2009). Some
research (e.g., Flora & Curran, 2004; Potthast, 1993) has found
that larger models result in too-high Type I error rates and under-
estimated standard errors. Large models are difficult to estimate
when the sample size is not sufficiently large. However, Beauducel
and Herzberg (2006) reported a case where both continuous ML
and cat-DWLS were relatively successful at estimating an eight-
factor, 40-indicator model with a sample size as low as 250. One

aim of the present study is to compare categorical and continuous
methods applied to ordinal data with small samples (N � 100 to
150) and for different model sizes (10 and 20 indicators).

In summary, few studies have systematically varied the number
of categories when comparing the performance of categorical and
continuous methods, and none have investigated the relative per-
formance of robust corrections applied to both continuous and
categorical methods. Furthermore, no study has assessed the rel-
ative performance of continuous and categorical methods in the
more extreme conditions of small samples, violations of underly-
ing normality, and asymmetric thresholds. The present study aims
to fill these gaps in the literature. We compare cat-LS and normal
theory ML estimation of CFA models with categorical variables
ranging from two to seven categories under all of the above
described conditions, examining parameter bias and efficiency as
well as the performance of test statistics. The results of this
investigation lead to recommendations to researchers regarding the
choice of continuous versus categorical methods for ordinal data.

Method

To compare the performance of continuous ML and cat-LS
methods with ordinal data, we simulated 1,000 data sets for each
of 480 conditions, formed by fully crossing the following five
factors:

• CFA model size (two levels: 10 indicators or 20 indicators)

• Underlying distribution (two levels: normal, nonnormal)

• Number of categories (six levels: two to seven categories)

• Threshold symmetry (five levels: symmetry, moderate
asymmetry, moderate asymmetry-alternating, extreme
asymmetry, extreme asymmetry-alternating)

• Sample size (four levels: N � 100, 150, 350, 600)

CFA Model Size

Model 1 was a two-factor CFA model with five indicators per
factor, for a total of 10 indicators. Factor loadings for the five
indicators of each factor were .3, .4, .5, .6, and .7. These values
have been used in previous simulation studies (e.g., Beauducel &
Herzberg, 2006; DiStefano, 2002; Flora & Curran, 2004). The
factor correlation was set to .3. The model was identified by fixing
the variance of each latent variable to 1. Generated continuous
variables had unit variance (prior to categorization). Model 2 was
identical to Model 1, but with 10 indicators per factor. Model 1 had
34 degrees of freedom; Model 2 had 169 degrees of freedom. Note
that for Model 2, the degrees of freedom are greater than the two
smallest studied sample sizes, and estimation might be particularly
difficult in these conditions (e.g., Yuan & Bentler, 1998).

8 When data are binary and the tetrachoric correlations are estimated
jointly rather than bivariately, some underlying normality tests are possible
(B. O. Muthén & Hofacker, 1988), but they have not gained popularity due
to difficulty of interpretation.
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Underlying Distribution

Categorical variables were generated by categorizing continu-
ous ones. The continuous variables were either normal or nonnor-
mal with univariate skew of 2 and kurtosis of 7. Previous research
by Flora and Curran (2004) found that categorical estimation
methods were fairly robust to moderate levels of underlying non-
normality (in their case, univariate skew of up to 1.25, and uni-
variate kurtosis up to 3.75); we sought to extend this finding by
selecting a more extreme level of nonnormality. The shape of the
underlying distribution is predicted to affect cat-LS parameter
estimates, because this method assumes that the continuous distri-
butions underlying the observed ordinal data are normal (or equiv-
alently, that the probit link function correctly describes the rela-
tionship between the categorical variables and their underlying
latent factors). Continuous ML estimation may be affected by
underlying nonnormality as well. Keeping the thresholds used for
categorization the same but changing the shape of the underlying
distribution that is being categorized changes the relative frequen-
cies of each observed category in the resulting categorical variable.
This can introduce additional skewness or kurtosis into observed
categorical variables, making them more nonnormal, or it can
balance opposite-direction skewness or kurtosis, making the re-
sulting categorical variables more normal. Additionally, the new
relative frequencies may be such that the relationship between the
observed categorical variables and the latent factors is even more
nonlinear, leading to greater bias when a linear latent regression
model (i.e., the CFA model) is fit to data.

Number of Categories

Our chief goal was to explore a range of number of categories
to see whether and at what point the categorical method would
cease to produce noticeably better results than the continuous

method. To this end, the continuous latent response distributions
were categorized into 2, 3, 4, 5, 6, or 7 categories.

Threshold Symmetry

Since previous research has found that most methods performed
worse when category thresholds were asymmetric (Babakus et al.,
1987; DiStefano, 2002; Dolan, 1994; Forero et al., 2009; Lei,
2009; Potthast, 1993; Rigdon & Ferguson, 1991; cf. Yang-
Wallentin et al., 2010), we included both symmetric and asym-
metric thresholds.

In the symmetry condition, category thresholds were distributed
symmetrically around 0 and spaced evenly to evenly divide the
distance between –2.5 and 2.5 standard deviations around the mean
(e.g., for the four-category condition, thresholds were –1.25, 0, and
1.25, resulting in 11%, 39%, 39%, and 11% of normally distributed
data falling into each category). In the moderate asymmetry condition,
category thresholds were chosen such that the peak of the distribution
fell to the left of center. In the extreme asymmetry condition, category
thresholds were created so that the lowest category would always
contain the largest number of cases, and all other categories contained
a much smaller (and decreasing) number of cases. (A table of thresh-
olds is available in the supplemental materials.) Finally, the moderate
asymmetry–alternating and extreme asymmetry–alternating condi-
tions had thresholds that were identical to the two asymmetric con-
ditions, except that the direction of the asymmetry was reversed for
odd-numbered variables, simulating a situation where different items
on a scale have very different levels of difficulty. This situation is
expected to make it difficult for either estimation method to estimate
a positive correlation.

For the underlying normal data, the expected proportion of cases
falling into each category for any given set of thresholds can be
analytically determined; Figure 1 depicts these frequencies in the

Figure 1. Distributions of observed data when thresholds are imposed on normally distributed data.
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symmetry, moderate asymmetry, and extreme symmetry condi-
tions (the two alternating conditions are omitted because underly-
ing distributions are normal and thus symmetric). For the under-
lying nonnormal data, the proportion of cases falling into each
category is difficult to determine analytically; these proportions
were estimated from 1,000,000 cases in each condition. Figure 2
depicts these proportions in the five threshold conditions. Addi-
tionally, Table 1 presents the skew and kurtosis of the resulting
categorical variables.

Sample Size

Four sample sizes were used. In psychology, sample sizes
smaller than N � 200 are common. Thus, we included two small
sample sizes (N � 100 and N � 150) and two medium sample
sizes (N � 350 and N � 600).

Data Generation and Analysis

Continuous data (normal and nonnormal) were generated in
EQS (Version 6.1; Bentler, 2008) using methods developed by
Fleishman (1978) and Vale and Maurelli (1983). EQS was also
used to categorize the data.

Data in all cells in the study were analyzed twice: (a) with
covariance-based continuous ML with robust corrections for non-
normality (Satorra & Bentler, 1994), and (b) with polychoric
correlation-based cat-LS with robust corrections (B. O. Muthén,
1993).9 Both EQS (Bentler, 2008) and Mplus (Version 6.11; L. K.
Muthén & Muthén, 1998–2010) were used for the analyses; how-
ever, only Mplus results are presented in this article.

The cat-LS method as implemented in Mplus first estimates
variables’ thresholds, then the matrix of polychoric correlations,
then the parameter estimates of the CFA model (B. O. Muthén,
1984). The robust corrections are then computed following B. O.
Muthén (1993) and B. O. Muthén et al. (1997). Mplus automati-
cally adds .5 to any zero-frequency cells found in bivariate con-
tingency tables to estimate the polychoric correlation matrix (but
not the asymptotic covariance matrix V̂). EQS uses a different
estimation method due to Lee et al. (1995); this method estimates
thresholds and polychoric correlations simultaneously. EQS also
adds .5 to any zero-frequency cells by default to estimate both
polychoric correlations and the asymptotic covariance matrix V̂.
With some exceptions, Mplus and EQS produced very similar
parameter estimates and robust standard errors, and thus only
Mplus results are discussed and presented. When differences oc-
curred they are noted in text. However, the rejection rates of the
EQS and Mplus versions of the test statistic Tcat-MV differed,
particularly when the number of categories was large. Mplus’s
Tcat-MV performed better throughout, and thus only Mplus results
are presented.10

Results

Results are presented in Figures 3–9. Due to an overwhelming
amount of data, the results in all figures are collapsed across some
conditions, and results for certain conditions are omitted. (Full
results are available in the online supplemental materials) In par-
ticular, and somewhat surprisingly, model size (10 vs. 20 indica-
tors) had the smallest effect on the quality of parameter estimates,

standard errors, and test statistics. In all figures, therefore, results
are collapsed across model size. Where there are substantial dif-
ferences as a function of model size, these are noted in the text.
Results for sample sizes of 150 and 350 are omitted from all
figures, because, in general, results of N � 150 were similar to
those with N � 100, and results with N � 350 were similar to N �
600. Threshold conditions of moderate asymmetry and moderate
asymmetry–alternating are also omitted; both moderate threshold
conditions showed similar patterns to their extreme counterparts,
but with better performance overall.

Below, we summarize our findings with respect to four out-
comes: (a) convergence rates, improper solutions (i.e., Heywood
cases), and outliers; (b) quality of factor loading and factor corre-
lation estimates, in terms of relative bias and efficiency; (c) quality
of robust standard errors, in terms of relative bias and coverage;
and (d) quality of test statistics, in terms of Type I error rate and
power. Results for (b) and (c) are summarized only for loadings
whose population values were � � .3 or � � .7 (recall that there
were two loadings of each size in the small model and four
loadings of each size in the large model; the presented results are
averaged across all loadings of the same population value). The
results for the intermediate loading values (� � .4, .5, .6) can be
found in the supplemental materials.

Convergence Failures, Heywood Cases, and Outliers

A high rate of convergence failures, improper solutions, and
outliers is an undesirable characteristic of an estimation method,
both because these situations lead to uninterpretable results and
also because researchers frequently interpret such outcomes as
revealing poor model fit (Chen, Bollen, Paxton, Curran, & Kirby,
2001). Most convergence failures and improper solutions (i.e.,
when cat-LS estimation produced a factor loading greater than 1 or
continuous ML estimation produced a standardized factor loading
greater than 1) appeared with small samples (N � 100 or 150). The
remaining conditions had at most one convergence failure out of
1,000 replications, and all but four cells had fewer than 2%
Heywood cases (the other five cells had between 2% and 8%
condition codes and were found in asymmetric threshold condi-
tions). Both convergence failures and improper solutions occurred
most frequently with two categories and decreased in frequency as
the number of categories increased; with more than four catego-
ries, at least 99% of cases converged in every condition, and
improper solutions were limited to 5% in all but two conditions.

9 A quarter of all conditions, (i.e., all Model 1 conditions where the
underlying data were normally distributed), were also analyzed with mar-
ginal maximum likelihood analysis (in Mplus, this is activated by ESTI-
MATOR � ML) and with cat-DWLS (ESTIMATOR � WLSMV). This
was done to ensure that cat-LS was in fact the best available categorical
estimator, as suggested in previous research (e.g., Forero et al., 2009;
Forero & Maydeu-Olivares, 2009; Yang-Wallentin et al., 2010). Results
from these analyses are available from the authors on request, but in short,
they confirm that cat-ULS is the best available categorical estimation
method as the number of categories increases beyond two to three.

10 We suspect that these differences are due to different computations of
the asymptotic covariance matrix V̂ and in particular differences in the
treatment of zero-frequency cells when computing this matrix.
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Continuous ML estimation resulted in more convergence problems
than cat-LS estimation; cat-LS estimation resulted in a greater
number of improper solutions. In general, the number of conver-
gence failures and improper solutions in the larger Model 2 was
less than half those found in Model 1; in the vast majority of
conditions, Model 2 had no failures of either type. Complete data
on rates of nonconvergence and Heywood cases can be found in
the supplemental materials. Nonconvergent and Heywood cases
were removed from subsequent analyses. Finally, outliers were
defined as any cases that produced a standard error greater than 1.
In only one case out of 420 conditions and two methods did such
an outlier not correspond to an improper solution. This one case
was additionally excluded from the analysis.

Parameter Estimates

Bias. Relative bias for parameter estimates was defined as

RB �

��est � ��

�
, where � is the true parameter value and ��est is the

average estimated value of the parameter across all replications in
a given cell. Consistent with other literature, we consider estimates
to be substantially biased if |RB| � .10 (e.g., Flora & Curran,
2004). While we present average parameter estimates rather than
relative bias estimates in the figures, the absolute value of the bias
can be inferred from the distance of each estimate from its true
parameter value, and we note when the relative bias exceeded 10%
in the text.

Figures 3 and 4 present mean estimated parameter values for
� � .3 and � � .7 for underlying normal data and underlying
nonnormal data, respectively. These figures make clear that with
two categories, ML factor loading estimates are all substantially
negatively biased, regardless of sample size. As the number of
categories increases, ML estimates gradually become less biased,
and by five categories relative bias is always less than 10%.
Cat-LS estimates, on the other hand, are largely accurate with two
to four categories and remain accurate with five to seven catego-
ries. There is only one exception to this pattern: in the extreme

Figure 2. Distributions of observed data when thresholds are imposed on nonnormally distributed data (skew
2, kurtosis 7).
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asymmetrical–alternating threshold condition when N � 100 and
data are binary, cat-LS estimates display considerable bias, partic-
ularly when loadings are high. Although ML estimates are consis-
tently within acceptable levels of bias as long as the number of

categories is five or greater, ML estimation is affected to a much
greater extent than cat-LS estimation by the distribution of cate-
gory thresholds. The skew in the observed variables that results
from extreme category asymmetry presents a greater challenge for

Table 1
Skew and Kurtosis of Observed Categorical Variables by Threshold Distribution, Underlying Distribution, and Number of Categories

Underlying distribution Categories

Threshold distribution

Symmetry Mod. Asym Mod. Asym-Alt Ext. Asym Ext. Asym-Alt

S K S K S K S K S K

Normal 2 0.00 �2.00 0.59 �1.65 �0.58 �1.66 1.97 1.88 �1.97 1.87
3 0.00 �0.54 0.13 �1.09 �0.13 �1.09 1.42 0.45 �1.41 0.44
4 0.00 �0.53 0.69 �0.23 �0.69 �0.23 1.10 �0.25 �1.10 �0.26
5 0.00 �0.47 0.59 �0.21 �0.59 �0.21 0.91 �0.58 �0.90 �0.59
6 0.00 �0.42 0.62 �0.11 �0.61 �0.11 0.80 �0.68 �0.80 �0.69

7 0.00 �0.41 0.52 �0.29 �0.52 �0.29 0.79 �0.61 �0.78 �0.62

S � 2, K � 7 2 0.50 �1.75 1.11 �0.77 �0.22 �1.95 2.26 3.13 �4.05 14.42
3 0.00 0.27 0.29 �0.96 �0.03 �0.59 1.84 1.76 �1.25 0.56
4 0.92 �0.05 1.08 0.44 �0.13 �0.65 1.57 0.94 �0.69 �0.82
5 0.73 �0.16 1.10 1.04 0.21 �0.80 1.38 0.48 �0.42 �1.11
6 0.80 0.19 1.52 1.92 0.17 �0.61 1.28 0.30 �0.25 �1.19
7 0.93 0.30 1.33 1.17 0.32 �0.39 1.27 0.38 �0.17 �1.19

Note. Values in this table were obtained by generating samples of size N � 1,000,000 for each condition and recording the skew and kurtosis of the
observed distributions. Mod. Asym � Moderate Asymmetry; Mod. Asym-Alt � Moderate Asymmetry–Alternating; Ext. Asym � Exteme Asymmetry; Ext.
Asym-Alt � Extreme Asymmetry–Alternating; S � skew; K � kurtosis.

Figure 3. Parameter estimates (factor loadings, underlying distribution is normal). Values are averaged across
model size and across all loadings for which the true parameter value was the same. Lines represent different
estimators and different sample sizes (see legend). ML � robust continuous maximum likelihood estimation;
cat-LS � robust categorical least squares estimation. The upper set of lines represents results for a true parameter
value of .7. The lower set of lines represents results for a true parameter value of .3. Vertical panels represent
different levels of threshold symmetry.
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ML estimation. Finally, comparing Figures 3 and 4, we see that the
shape of the underlying distribution affects cat-LS estimates more
than ML estimates. When the underlying distribution is nonnor-
mal, all cat-LS parameter estimates take on a slight positive bias
(around 4%), except when there are just two categories. In this
case, and especially with extremely asymmetrical thresholds, pa-
rameters are underestimated. This is to be expected, because
cat-LS assumes the underlying continuous distributions are nor-
mal, and cat-LS estimates are not consistent when this assumption
is violated. Model size had little effect on the accuracy of param-
eter estimates: The pattern of results in Figures 3 and 4 equally
describes Models 1 and 2.

Figure 5 presents the mean parameter estimates of the factor
correlation (population value is .3) for both normal and nonnormal
underlying data. As is clear from the figure, both methods gener-
ally yield accurate results. In particular, ML yields unbiased esti-
mates in almost every condition, regardless of sample size, number
of categories, symmetry and underlying distribution. Cat-LS esti-
mates show little bias across most conditions, except when the
combination of factors includes binary data, extremely asymmet-
rical thresholds, and a small sample. In these conditions, the factor
correlation as estimated by cat-LS is much higher than the true
value, and this bias is greater when the underlying data are non-

normal. These are the same conditions that correspond to factor
loading bias with cat-LS. Comparing the two methods, cat-LS
generally produces slightly more accurate estimates than ML with
two to four categories, and slightly less accurate estimates with
five to seven categories.11 This comparison is hardly meaningful,
however, given that bias is almost never greater than 5% with
either method. Model size again has little effect on estimates of the
factor correlation.

Efficiency. We evaluated the size of empirical standard de-
viations of standardized parameter estimates as a measure of
efficiency. These results are not presented but are available in the
supplemental materials. As expected, with both methods, param-
eters are estimated more efficiently with increasing sample size
and an increasing number of categories; this increase in efficiency

11 Results for the factor correlation were also biased in EQS under
similar conditions, particularly category asymmetry, but the bias was
higher and not limited to two categories. The highest observed overesti-
mate was .67, with two categories and extreme asymmetry–alternating
thresholds, although overestimates also occurred with seven categories
(e.g., .60; extreme asymmetry). In EQS, ML produced consistently better
estimates of factor correlations.

Figure 4. Parameter estimates (factor loadings, underlying distribution is nonnormal; skew 2, kurtosis 7).
Values are averaged across model size, and across all loadings for which the true parameter value was the same.
Lines represent different estimators and different sample sizes (see legend). ML � robust continuous maximum
likelihood estimation; cat-LS � robust categorical least squares estimation. The upper set of lines represents
results for a true parameter value of .7. The lower set of lines represents results for a true parameter value of .3.
Vertical panels represent different levels of threshold symmetry.

364 RHEMTULLA, BROSSEAU-LIARD, AND SAVALEI



is approximately equal across the two methods. Both methods
yield less efficient estimates when thresholds are asymmetric. ML
yields more efficient factor loading estimates than cat-LS when
factor loadings are small. When factor loadings are large and
sample size is small, cat-LS produces more efficient estimates than
ML; when factor loadings and sample size are large, ML estimates
are more efficient. ML factor correlation estimates are more effi-
cient than cat-LS estimates when thresholds are symmetrically
distributed, but in more complex threshold conditions, cat-LS
estimates are more efficient. It should be noted that efficiency
comparisons only make sense when there is little or no bias in
parameter estimates. For this reason, the tendency of ML factor
loadings to be more efficient than those of cat-LS when N is large
is not always meaningful, particularly with few categories, where
ML is most biased.

Robust Standard Errors

We evaluated the performance of robust standard errors in terms
of bias relative to empirical standard errors (i.e., standard devia-
tions of unstandardized parameter estimates) as well as in terms of
the coverage of 95% confidence intervals. Coverage results are

presented in Figures 6–8; bias results are not presented, but both
bias and coverage are discussed below.

Bias. Relative bias for robust standard error estimates is

defined as RB �

SE�est � SEemp�

SEemp
, where SE�est is the average

estimated robust standard error in a given cell and SEemp is the
empirical standard deviation of parameter estimates in the corre-
sponding cell, which is used as a proxy for the true parameter
standard error.

Both ML and cat-LS robust standard error estimates display
consistently negative bias; that is, they are on average smaller than
the empirical standard deviations of the associated parameter es-
timates. When the sample size is small, this bias is often substan-
tial. In particular, ML standard errors are from 8% to 30% (aver-
age � 15%) smaller than empirical standard errors when the
sample size is small, and cat-LS standard errors are from 3% to
37% (average � 13%) smaller than empirical standard errors when
the sample size is small. The extent of this bias is not affected by
threshold condition or underlying distribution.

On the whole, the two methods produce comparable standard
error estimates. Cat-LS produces better robust standard errors

Figure 5. Parameter estimates (factor correlation, true value is .3). Values are averaged across model size.
Lines represent different estimators and different sample sizes (see legend). ML � robust continuous maximum
likelihood estimation; cat-LS � robust categorical least squares estimation. The upper panel corresponds to
conditions in which the underlying distribution is normal; the lower panel corresponds to conditions in which the
underlying distribution is nonnormal (skew 2, kurtosis 7). Vertical panels represent different levels of threshold
symmetry.
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for factor loadings, and ML produces better robust standard
errors for factor correlations. This finding is consistent across
number of categories.

Coverage. Figures 6 and 7 present coverage rates for � �
.3 and � � .7 when the underlying continuous distribution is
normal (Figure 6) and nonnormal (Figure 7). Figure 8 presents
coverage for the factor correlation for both types of underlying
distribution. Coverage is defined as the proportion of 95%
confidence intervals (created using robust standard error esti-
mates) around the estimated parameter value that include the
true parameter value. As such, 95% is the optimal value of
coverage, and coverage below 90% is considered inadequate
(Collins, Schafer, & Kam, 2001; Enders & Peugh, 2004). The
largest observed coverage value was 95.3%. Because coverage
is a joint measure of parameter estimate bias and standard error
bias, it can be low if parameter estimates are biased, standard
error estimates are too small, or a combination of these.

Overall, the performance of the two methods in terms of
coverage is similar to their performance in terms of parameter
estimate bias. The more drastically parameter estimates diverge
from the true parameter value (Figures 3–5), the more coverage
drops to unacceptable levels (Figures 6 – 8). As with parameter
bias, when factor loadings are high, cat-LS outperforms ML in

almost every condition. The difference between methods is
most pronounced when the number of categories is small (due
to greater bias in parameter estimates) and when the sample is
large (due to smaller standard errors). ML coverage rates are
affected by both the underlying distribution and threshold sym-
metry. When thresholds are symmetric, ML coverage rates with
five or more categories are around 90%. When thresholds are
not symmetric, ML coverage rates with five or more categories
and N � 600 range from 46% (five categories, underlying
normal, extreme asymmetry–alternating thresholds) to 89%
(seven categories, underlying nonnormal, extreme asymmetry
thresholds). These results suggest that confidence intervals
around ML parameter estimates may not be reliable if there is
evidence that categories are asymmetrically distributed. Cat-LS
coverage rates are more predictable: When the underlying dis-
tribution is normal, coverage is always high (greater than 90%);
when it is nonnormal, coverage becomes lower, but never drops
below 83% when N � 600 (when N � 100, there is a single
condition in which coverage is poor, corresponding to extreme
asymmetry–alternating thresholds, underlying nonnormal dis-
tribution, and two categories. Poor coverage in this case is due
to a high degree of bias in the parameter estimates). Cat-LS
coverage is best with few categories.

Figure 6. Coverage by number of categories (.7 and .3 factor loadings); underlying distribution is normal.
Values are averaged across model size and across all loadings for which the true parameter value was the same.
Lines represent different estimators and different sample sizes (see legend). ML � robust continuous maximum
likelihood estimation; cat-LS � robust categorical least squares estimation. The upper panel represents results
for a true parameter value of .7. The lower panel represents results for a true parameter value of .3. Vertical
panels represent different levels of threshold symmetry.
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The ML coverage is much better for factor loadings whose
population values are low. With five or more categories, cov-
erage in all conditions is at least 87%. With four categories,
coverage is at least 83%, and with two to three categories, it is
highly variable, ranging from 60% to 94% depending on un-
derlying distribution and threshold symmetry. Cat-LS coverage
rates of low factor loadings are very high across all conditions,
except in the one condition where significant parameter esti-
mate bias was present—that is, with binary data, N � 100,
underlying nonnormality, and alternating extremely asymmetric
thresholds. In this condition cat-LS coverage is just 65%, but
ML coverage is even lower at 63%.

Model size has a slight effect on the relative performance of
the methods: Both estimators have slightly poorer coverage in
the 20-indicator model than in the 10-indicator model. The
difference between models is bigger when the coverage rate is
worse for both methods. For instance, when coverage for the
smaller model is 85% or higher, it may be 1%–2% lower for the
larger model. When coverage for the smaller model is very poor
(e.g., 40%), it is often drastically lower for the larger model
(e.g., 17%).

Figure 8 presents coverage results for the factor correlation as
a function of threshold condition, number of categories, esti-

mation method, and sample size. When N � 600, the two
methods provide similar coverage rates, which tend to vary
from .90 to .95. When N � 100, both cat-LS and ML have
poorer coverage when the number of categories is small and the
thresholds are asymmetric, but ML coverage rates are better
than those of cat-LS, particularly when the threshold distribu-
tion is not symmetric.

Test Statistics

With continuous-variable data, we examined the mean-
adjusted statistic TML-M and the mean-and-variance-adjusted
statistic, TML-MV (Satorra & Bentler, 1994). We found that
TML-M produced systematically higher Type I error rates than
TML-MV across every condition; thus, we do not present the
results for TM. However, this finding implies that the good
performance of TML-M that has been reported in simulation
studies (e.g., Curran, West, & Finch, 1996; Hu, Bentler, &
Kano, 1992) depends heavily on the assumption that the data
are continuous nonnormal rather than categorical. With
categorical-variable data, we examined only the mean-and-
variance adjusted statistic Tcat-MV, because Mplus does not

Figure 7. Coverage by number of categories (.7 and .3 factor loadings); underlying distribution is nonnormal
(skew 2, kurtosis 7). Values are averaged across model size, and across all loadings for which the true parameter
value was the same. Lines represent different estimators and different sample sizes (see legend). ML � robust
continuous maximum likelihood estimation; cat-LS � robust categorical least squares estimation. The upper
panel represents results for a true parameter value of .7. The lower panel represents results for a true parameter
value of .3. Vertical panels represent different levels of threshold symmetry.
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provide Tcat-M with cat-LS estimation.12 However, Tcat-MV gen-
erally performed very well.

Type I error. Empirical Type I error at � � .05 is defined as
the proportion of converged replications that generated a p value
less than .05. Type I error rates for ML-based TML-MV and cat-LS-
based Tcat-MV are presented in Figure 9. With one exception, both
cat-LS and ML produce test statistics with reasonable Type I error
control. The exception is the case of extreme asymmetry–
alternating thresholds, with few categories and a large sample,
when the Type I error rate associated with TML-MV is highly
inflated. This inflation is seen most clearly in the larger model and
when the underlying distribution is nonnormal; in this case, the
Type I error rate with two to three categories is nearly .6.13 Normal
theory ML methodology actually assumes that a linear model
holds for observed data, and thus the model is fundamentally
misspecified. Thus, technically, TML-MV’s rejection rates measure
not Type I error but power to detect this misspecification
(Maydeu-Olivares, Cai, & Hernández, 2011). The assumption be-
hind using continuous methodology with categorical variables is
that, at least as the number of categories gets large, this power will
be low enough to function as a Type I error rate. As Figure 9
shows, this is largely true, except with few categories, N � 600,
and extreme asymmetry-–alternating thresholds, where the in-

creased sample size and the worst type of categorization results in
TML-MV having fairly high power to detect that the underlying
linear model is misspecified (i.e., data were wrongly assumed to be
continuous).

Setting aside this most problematic condition, Type I error rates
rarely rise above .1, and they are frequently at or below .05 for
both methods. With six to seven categories and a small sample
size, cat-LS exhibits the worst Type I error control, frequently
reaching around .1 or a little above. In general, Type I error rates

12 EQS prints both robust categorical statistics but their performance is
not as good as the performance of Mplus’s mean-and-variance adjusted
statistic, particularly with larger number of categories. With two to four
categories, Type I errors of both EQS test statistics tend to stay below .06,
but they are frequently closer to 0 than to .05. Across most thresholds
conditions, EQS’s test statistics drop to close to zero with five or more
categories; the exception to this is the threshold condition extreme asymmetry–
alternating, where both Type I error rates leap up to as high as 80%.

13 It is worth noting that Mplus’s implementation of the robust correc-
tions is slightly different from EQS’s implementation. As a result, Type I
error rates produced by Mplus are typically a few percentage points higher
than those of EQS. The differences are slightly greater with a small sample
and the larger model, where they are in the 3%–8% range.

Figure 8. Coverage by number of categories (factor correlation). Values are averaged across model size. Lines
represent different estimators and different sample sizes (see legend). ML � robust continuous maximum
likelihood estimation; cat-LS � robust categorical least squares estimation. The upper panel corresponds to
conditions in which the underlying distribution is normal; the lower panel corresponds to conditions in which the
underlying distribution is nonnormal (skew 2, kurtosis 7). Vertical panels represent different levels of threshold
symmetry.
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associated with cat-LS increase as the number of categories in-
creases, whereas those associated with ML are stable. In the
extreme asymmetry and extreme asymmetry–alternating threshold
conditions, Type I error rates of Tcat-MV spike at three categories.
This spike is higher for the larger model (around 24%); it is not
clear what causes this particular anomaly. Type I error rates tend
to be around 1% lower in the larger model than the smaller model;
wherever a particularly poor condition leads to a high Type I error,
it is worse in the larger model.

Power. While this study is mainly concerned with correctly
specified models, we conducted a brief evaluation of the relative
power of the ML-based and the cat-LS-based robust test statistics to
detect at least a major model misspecification. We fit a one-factor
model to the data generated by Model 1 (the 10-indicator, two-factor
model) for the subset of conditions in which the underlying distribu-
tion was normal and thresholds were symmetrically distributed. Un-
der these conditions, Type I error rate was well controlled by both
statistics, allowing for a power examination. Table 2 displays the

Figure 9. Type I error of mean-and-variance adjusted test statistic by number of categories. Values are
averaged across model size. Lines represent different estimators and different sample sizes (see legend). ML �
robust continuous maximum likelihood estimation; cat-LS � robust categorical least squares estimation. The
upper panel corresponds to conditions in which the underlying distribution is normal; the lower panel corre-
sponds to conditions in which the underlying distribution is nonnormal (skew 2, kurtosis 7). Vertical panels
represent different levels of threshold symmetry.

Table 2
Observed Power of TMV Statistic to Detect a Majorly Misspecified (One-Factor) Model

N

2 categories 3 categories 4 categories 5 categories 6 categories 7 categories

ML cat-LS ML cat-LS ML cat-LS ML cat-LS ML cat-LS ML cat-LS

100 .458 .424 .627 .615 .771 .824 .815 .886 .846 .935 .857 .942
150 .685 .698 .878 .895 .955 .969 .974 .989 .981 .991 .989 .997
350 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. Type I error was assessed by fitting a one-factor model to two-factor simulated data. Conditions where power is less than 80% are bolded. ML �
robust continuous maximum likelihood estimation; cat-LS � robust categorical least squares estimation.
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results. Values lower than 80% are bolded. With large samples (N �
350 to 600), both statistics have virtually perfect power to detect a
misspecified model. With N � 100 or 150 and four or more catego-
ries, cat-LS has slightly greater power than ML; with two to three
categories, the two methods have comparably low power rates.

Discussion

The aim of the present study was to revisit the question, how
many categories should variables have before they may be treated
as continuous? Though many studies have investigated aspects of
this question, none have directly compared the best currently
available robust methodologies for both types of data, and none
have systematically manipulated multiple factors to simulate a
variety of challenging conditions. We investigated the most com-
monly used continuous nonnormal estimation method, robust ML,
and one of the best categorical data estimation methods, robust
cat-LS. To determine the number of categories at which method
choice ceases to matter, we studied variables with two through
seven categories. To test the robustness of each method against
various assumption violations and nonideal scenarios, we manip-
ulated the distribution of underlying data, the thresholds used to
categorize it, model size, and sample size. The results of this
investigation allow us to make broad conclusions about the relative
utility of the two studied methods.

Overall, our results confirm that cat-LS performs extremely well
with up to seven categories and in a variety of conditions. The only
problematic conditions for cat-LS involved the intersection of
underlying nonnormality and small samples. However, once the
number of categories in the data reached five, continuous robust
ML frequently performed as well as (and occasionally better than)
robust cat-LS. In brief, we conclude that cat-LS is a good estima-
tion choice for ordinal data with as many as seven categories but
that with five or more categories robust ML is an acceptable choice
as well, particularly when the thresholds are not wildly asymmet-
ric. We provide a more detailed discussion of our findings below.

Two to Four Categories

Our results confirm the conventional wisdom that, with just two
to four categories, continuous methodology is generally not rec-
ommended. With few categories, robust ML consistently underes-
timates factor loadings and parameter standard errors. Together,
these two shortcomings lead robust ML to have unacceptably low
coverage for factor loadings. Consistent with previous studies,
however, ML produced unbiased estimates of the factor correla-
tion. These results suggest that it is the measurement model pa-
rameters that are most affected by wrongly assuming that a linear
model describes the relations between categorical variables and
latent factors. The structural model parameters (in this case, factor
correlations) are not affected, and if the structural parameters are
of greatest interest, robust ML can be an acceptable choice even
with two- to four-category data and is in fact preferred when the
sample size is small. While cat-LS was largely superior to ML with
two to four categories, it showed mild upward bias in nonideal
conditions (underlying nonnormal distribution, asymmetric thresh-
olds, small samples).

When it comes to test statistics, Tcat-MV performs well in general
but tends to underreject when data are binary. This underrejection,

however, does not translate into loss of power relative to TML-MV,
which does not have this tendency. Tcat-MV also tends to overreject
models with three-category data when the underlying data distri-
bution is nonnormal. ML-based TML-MV performs about as well as
Tcat-MV, except with alternating threshold asymmetry, where ML
rejection rates are occasionally extremely high. This finding means
that even though parameter estimates are generally downward
biased when robust ML is applied to data with two to four
categories, the continuous ML robust test statistic can still be
useful to evaluate the overall model fit. Both statistics had rela-
tively low power to detect serious model misspecification with
small samples and two to three category variables; this finding
suggests that researchers fitting models to such severely catego-
rized data should aim to obtain a larger sample size than is
typically recommended for continuous data.

Five to Seven Categories

While previous research has generally agreed that it is a bad idea
to use ML with fewer than five categories, evidence has been
unclear when five or more categories are present. Past findings
have suggested that categorical methodology can outperform con-
tinuous methodology with five, six, and even seven categories
(e.g., Beauducel & Herzberg, 2006; Dolan, 1994); however, no
study has compared categorical methods to the best available
robust continuous methods. With five to seven categories, cat-LS
continues to display more accurate factor loading estimates than
ML, although both methods produce estimates within the range of
acceptable bias. When category thresholds are roughly symmetric,
ML is as good as or better than cat-LS. In particular, when there
are seven categories, ML is frequently preferable to cat-LS. As
category thresholds become more asymmetric, ML parameter es-
timates become increasingly negatively biased, which in turn af-
fects confidence interval coverage. In no condition, however, did
we observe that the relative bias of ML parameter estimates was
greater than 10% with five or more categories. The worst bias was
observed when factor loadings were high: The higher the loading,
the greater the bias in ML estimates. As with two to four catego-
ries, ML estimates of the structural model parameters (in this case,
the correlation between two factors) were extremely accurate,
producing marginally better estimates than cat-LS.

When it comes to coverage, the two methods produce similarly
good coverage rates for low factor loadings and factor correlations.
When factor loadings are high, cat-LS confidence intervals are
almost always more accurate. This is especially true when the
underlying distributions are normal but the category thresholds
are asymmetric. When these two conditions hold, cat-LS coverage
rates are between 4% and 49% higher. When thresholds are sym-
metric, or when the underlying distribution is nonnormal, the two
methods produce comparable coverage rates, although cat-LS cov-
erage continues to be just slightly better.

Finally, when it comes to Type I error and power of the robust
test statistic, both methods produced comparably good results.
With five categories, TML-MV produces slightly worse rejection
rates than Tcat-MV in the extreme asymmetry–alternating condi-
tions. There are virtually no differences between the Type I error
rates of the two statistics with six categories. With seven catego-
ries, TML-MV produces slightly more accurate rejection rates than
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Tcat-MV in smaller samples. Tcat-MV is slightly more powerful than
TML-MV but only when N � 100.

Overall, these findings suggest that, particularly if other reasons
to prefer ML estimation are present, there is little problem in doing
so with five or more categories.

Additional Considerations

In summary, the present findings support the common wisdom
that categorical methodology is most necessary when variables
have two to four categories. Additionally, categorical methodology
outperforms continuous methodology with up to seven categories
when category thresholds are asymmetric and factor loadings are
high. Robust continuous methodology performs as well as cat-LS
with five to seven categories, and even slightly better with seven
categories and a small sample size, provided that thresholds are
approximately symmetric.

Other factors also play a role in the relative performance of ML
and cat-LS. Cat-LS parameter estimates are more sensitive than
robust ML parameter estimates to violations of the assumption of
normality of underlying continuous variables: When the underly-
ing distribution is nonnormal, cat-LS parameter estimates increase
by a few tenths of a standardized loading, leading to small but
systematic overestimation of the parameter value. For both ML
and cat-LS, conditions that lead to large negative bias in parameter
estimates when the underlying distribution is normal lead to even
worse bias when the distribution is nonnormal. Coverage and Type
I error rates are not affected very much by underlying nonnormal-
ity when cat-LS is used, and they are inconsistently affected
(sometimes for the better, sometimes for the worse) when ML is
used. The practical significance of these results may be limited,
however, as the assumption that each categorical variable is a
categorization of an underlying continuous normally distributed
variable is not testable. Researchers may wish to use additional
caution when interpreting results obtained by cat-LS when it is
likely that this assumption is violated. Thoughtful consideration of
a given construct as well as the population of interest may reveal
whether the normality assumption is plausible. For example, if a
categorical variable measures frequency of drug use, it is unlikely
that the underlying continuous variable is normally distributed in
the general population, although it may be in some clinical popu-
lations.

Our findings regarding model size generally indicate little dif-
ference between methods as a function of model size. ML param-
eter estimates are insensitive to model size, and cat-LS parameter
estimates are only affected when the sample size is small. In this
case, the smaller model shows less bias. This suggests that cate-
gorical methodology is more sensitive to the extreme situation
when a model’s degrees of freedom are larger than the sample size;
this may be because the asymptotic covariance matrix of poly-
choric correlations is more difficult to estimate in these conditions.
Both methods have poorer coverage but lower Type I error rates in
the larger model.

There are several reasons why applied researchers may continue
using continuous estimation methods, even with ordinal data.
Continuous methods are older and hence more familiar to re-
searchers. ML with robust corrections for nonnormality is no
longer an esoteric method but is routinely used in applications.
While limited information categorical methods with robust correc-

tions are rapidly gaining popularity, they remain newer, less fa-
miliar, and less integrated with other developments. For example,
the treatment of missing data is largely straightforward with con-
tinuous methodologies but remains a challenge with categorical
methodology (e.g., Mplus defaults to pairwise deletion when data
are declared as categorical). Although it would be possible to
conduct multiple imputation on a categorical-variable data set
before analyzing, the standard recommendation is to impute con-
tinuous values for missing data even when the original variables
are categorical, which would produce a data set containing a mix
of continuous and categorical observations (Enders, 2010). Most
applied researchers are also limited in their choice of software, and
it may be that the software package they have access to only
implements one type of methodology (e.g., the R package lavaan
0.4–13 supports robust ML methodology but not yet categorical
methodology). The results of the present study indicate that reli-
ance on continuous methodology in the presence of ordinal data
will produce acceptable results when the number of categories is
five or higher. If no other choice exists but the data have fewer
categories, the researcher should interpret the estimated measure-
ment model parameters as severe underestimates.

One limitation of our results is that different software packages
can implement the same methodology somewhat differently, and
this particularly applies to the limited information categorical
methodology, which has historically been developed separately by
authors of various software packages (Jöreskog, 1994; Lee et al.,
1990, 1995; B. O. Muthén, 1984, 1993; B. O. Muthén et al., 1997).
Our recommendations are thus somewhat specific to users of
Mplus. However, we also analyzed these data using EQS, and the
results for parameter estimates and standard errors were largely
similar, although categorical test statistics produced by EQS be-
haved worse. A second limitation is that our results are based on
CFA models, and as such they should not be generalized to more
complex models, such as multiple group models or mixture models
(e.g., Bauer, 2005; Bauer & Curran, 2004). More research is
necessary to determine how the choice of continuous versus cat-
egorical methodology impacts estimation and inference in such
models.

In addition to studying models that are more complex than
classic CFA models, future research should study models with a
larger structural component, to fully test the hypothesis that con-
tinuous methods estimate structural parameters accurately even
when the number of categories is low. A more thorough investi-
gation of power is also warranted. Finally, a more detailed com-
parison of cat-LS and other categorical methods such as cat-
DWLS may also be in order; while Forero et al. (2009) made such
a comparison and ruled in favor of cat-LS, those authors did not
examine factor correlations or test statistics.

Conclusion

The present study summarizes the relative performance of the
best available robust continuous and categorical methodologies for
CFA with categorical variables. Our findings confirm that when
observed variables have fewer than five categories, robust cate-
gorical methodology is best. With five to seven categories, both
methods yield acceptable performance; the choice between meth-
ods will depend on other aspects of the data, including sample size,
model size, the symmetry of the observed distribution, the likely
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underlying distribution of the constructs being measured, and the
results that are of most interest to the researcher. These findings
should guide applied researchers in their choice of method.
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