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Special issue: Planned missingness

Planned missing designs to optimize
the efficiency of latent growth
parameter estimates

Mijke Rhemtulla,1 Fan Jia,2 Wei Wu,2 and Todd D. Little3

Abstract
We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a
model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The
first is item-level planned missingness using a three-form design at each wave such that 25% of data are missing. The second is wave-
level planned missingness such that each participant is missing up to two waves of data. The third combines both forms of missingness.
We find that three-form missingness results in high convergence rates, little parameter estimate or standard error bias, and high efficiency
relative to the complete data design for almost all parameter types. In contrast, wave missingness and the combined design result in dra-
matically lowered efficiency for parameters measuring individual variability in rates of change (e.g., latent slope variances and covariances),
and bias in both estimates and standard errors for these same parameters. We conclude that wave missingness should not be used except
with large effect sizes and very large samples.

Keywords
planned missing designs, latent growth curves, three-form design, wave missingness, longitudinal planned missingness

*This article accepted during Marcel van Aken’s term as Editor-in-Chief.

Planned missing data designs allow researchers to reduce the

testing burden on participants, leading to higher-quality data

with less unplanned missingness and smaller fatigue and prac-

tice effects (Harel, Stratton, & Aseltine, 2012). Planned missing-

ness can be applied to many complex models resulting in no

added bias and minimal power loss. In the present paper, we

apply both three-form planned missingness, where participants are

assigned to miss a subset of items at every time point (Graham,

Hofer, & MacKinnon, 1996; Graham, Hofer, & Piccinin, 1994;

Graham, Taylor, Olchowski, & Cumsille, 2006; Hansen et al.,

1988), and wave missingness, where participants are assigned to

miss a subset of measurement occasions (Graham, Taylor, & Cum-

sille, 2001) to simulated latent growth curve data. We model latent

growth curves of two constructs, allowing the intercepts and slopes

to covary. We examine the results in terms of bias and efficiency

of the estimates of these latent growth parameters—the means, var-

iances, and covariances among the latent intercepts and slopes.

Latent growth curve models

Latent growth curve models (LGMs), (e.g., McArdle & Epstein,

1987; McArdle & Nesselroade, 2003; Preacher, Wichman, Mac-

Callum & Briggs, 2008) are some of the most popular models for

longitudinal data, because they allow researchers to simultaneously

model group trends in change over time as well as individual varia-

bility in those trends. In a very basic linear latent growth curve,

observed data from a single construct are gathered at a number of

fixed time points from a group of people. Two latent variables—

an intercept and a linear slope—capture participants’ initial levels

(where ‘initial’ typically refers to the first time point, but can be

placed anywhere that makes sense) and their rates of linear change

over time. The mean intercept and mean slope describe the average

intercept and the average rate of change; for example, a positive

mean slope means that, on average, participants increase over time

in the construct that is being measured. The variance of the inter-

cept and slope reflect constant individual differences between peo-

ple, and individual differences in the rates of change, respectively.

For example, a large slope variance means that people’s individual

growth trajectories vary widely in their steepness.

The linear model can be modified to include non-linear trajec-

tories by including quadratic and cubic trends, or by allowing the

shape of the slope to be freely estimated rather than fixed in linear

increments (Meredith & Tisak, 1990). This approach is called a

latent basis curve, and it is appropriate whenever there is not a

strong theoretical reason to assume that change in a construct is lin-

ear, or when a particular parametric shape does not fit the data well.

The construct(s) whose development are being modeled can be

represented either by a single observed variable at each time point

(e.g., a test score or scale score) or by a latent variable with several

observed indicators. The latent variable approach is called a multi-

variate LGM, or a ‘‘curve-of-factors’’ model (McArdle, 1988)

because the growth curve is overlaid on a series of latent factors

that represent the construct over time instead of single observed
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variables. An important advantage of this approach is that measure-

ment error is removed at the level of the underlying latent factors,

so estimates of growth curve parameters can be estimated with

greater precision (Hertzog, Lindenberger, Ghisletta, & von Oert-

zen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008).

A conceptual benefit of LGMs is that they allow researchers to

study relations among individual differences in rates of change over

time across different constructs (e.g., Curran, Stice, & Chassis,

1997; Rhemtulla & Tucker-Drob, 2011). For example, LGMs allow

researchers to examine not only the correlation between children’s

math and reading aptitude at fixed points in time, but to examine

whether individual children’s rates of development in math are cor-

related with their rates of development in reading: Are quick math

learners also quick reading learners?

The model we use in this paper is a two-construct multivariate

LGM based on the parameter values reported in Little (2013, Figure

8.7). The model parameters were estimated from Espelage’s data

(see Espelage, Rao, Little, and Rose, 2011), in which bullying and

homophobic teasing were measured at five time points, each six

months apart. In that study, an LGM was fitted to each construct

using a latent basis model to represent the change trajectory. The

latent intercepts and slopes of the two constructs were allowed to

correlate, and phantom constructs were used to facilitate the inter-

pretation of the relations between the latent intercepts and slopes. In

the present paper, we simplified the model by excluding the phan-

tom constructs. Otherwise, our model was identical to theirs (see

Figure 1).

Item-level planned missingness

Several planned missingness (PM) designs have been proposed for

cross-sectional data (Bunting, Adamson, & Mulhall, 2002; Graham,

Hofer, & MacKinnon, 1996; Graham et al., 2006). These typically

involve imposing item-level missingness such that some or all par-

ticipants are randomly assigned to respond to only a subset of items.

For example, the three-form design (Hansen et al., 1988; Graham

et al., 1996; Graham et al., 1994; Graham et al., 2006), allows

researchers to insert 25–33% missing data by assigning participants

to complete a subset of all the survey items. In this design, surveys

are divided into four subsets including a common set (X, which

every participant completes) and three partial sets (A, B, and C,

which two-thirds of participants complete). By giving each partici-

pant a smaller number of items to complete, participants are less

likely to skip items, reducing the amount of non-random missing-

ness (Harel et al., 2012).

Item-level missingness can be imposed in longitudinal data col-

lection by assigning participants to respond to a subset of items at

each measurement occasion. Recent studies (e.g., Jorgensen et al.,

in press; Jia et al., in press) have studied the performance of item-

level missingness by imposing the three-form design at each time

point in longitudinal panel models, where the predictive relations

between constructs over time are of interest (e.g., longitudinal med-

iation). To our knowledge no studies have examined the effect of

item-level planned missingness in the context of latent growth

curve models. This omission is important because missingness can

have very different effects on parameters of different models (e.g.

Rhemtulla & Savalei, 2012; Rhemtulla, Savalei, & Little, under

review). For example, when three-form missingness is imposed, the

power of factor loadings, means, variances, and regression coeffi-

cients are decreased to a different extent. As such, three-form miss-

ingness may have better results for some models (e.g., confirmatory

factor analysis models) than others (e.g. regression models).

Wave-level planned missingness

McArdle and colleagues (McArdle, Ferrer-Caja, Hamagami, &

Woodcock, 2002; McArdle, Grimm, Hamagami, Bowles, &

Meredith, 2009; McArdle & Woodcock, 1997) have proposed

several models that capitalize on missing data in longitudinal

designs. For example, the accelerated time-lag design (McArdle &

Woodcock, 1997) begins with a two time-point design where the

amount of time between two testing occasions varies across

Figure 1. The data generating and analysis model. A, B, and C refer to items or item parcels/subscales from each of the three-form missing sets. Each

observed variable is missing one-third of observations. Strong invariance is imposed on the model such that factor loadings are constrained to be equal

across time points, and the intercepts of variables A to C are constrained to be equal across time points in estimation. The effects-coded method is used

for model identification, which means that the set of loadings for each latent t variable is constrained to average 1.0 and the set of observed variable

intercepts averages zero. The loadings and residual variances of the ten latent t variables were then estimated with the constraints. Intercepts of the

latent variables t1–t5 are 0 in the population, and fixed to 0 in estimation. Asterisks denote fixed parameter values.
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participants (as is frequently the case with two time-point data). The

data are then arrayed into multiple time points such that every partici-

pant has complete data at the first measurement occasion and at one

later occasion (determined by the particular time lag between testing

occasions for each participant), with missing data at every other occa-

sion. This layout creates a high proportion of missing data, as each par-

ticipant is measured at just two time points out of many, but the

resulting model describes continuous growth over time, and can

even be used to quantify and remove practice effects from the

growth trend. This design is an example of wave-level missingness,

because participants are missing entire waves of data collection. An

additional benefit of this kind of design is that it can drastically

reduce the cost of data collection compared to a design where all

participants are measured at each time point.

Graham et al. (2001) compared the cost efficiency of wave-level

missingness designs to those with complete data at every wave, hold-

ing the total number of data points collected equal (i.e. they com-

pared missing data designs to complete data designs with a smaller

sample size). Beginning with a univariate linear latent growth curve

model with five measurement occasions, they simulated several dif-

ferent wave-missing designs where each participant was missing up

to three waves. They found that when missingness was concentrated

in the middle waves (waves 2–4), the power to detect a significant

regression path from an observed grouping variable to the latent lin-

ear slope was higher than when missingness was distributed evenly

across all five waves. Moreover, they found that the efficiency of that

regression coefficient was higher for any planned missing design

than for a comparable complete data design that had the same total

number of data points (e.g., a wave-missing design with 50% missing

data produced more efficient regression estimates than a complete

data design with a 50% smaller sample size).

Mistler and Enders (2012) described a follow-up to this finding

where they examined the efficiency of the mean of the latent growth

parameter in a six time-point linear growth curve model in two dif-

ferent wave-missing designs. In the first, each participant was miss-

ing two out of six occasions, with missingness distributed equally

across all six time points. In the second, each participant was miss-

ing two out of the middle four occasions, with complete data at the

first and last occasions. Both these conditions were compared to a

complete data design with a reduced sample size to equate the total

number of data points across the three designs. Power to detect the

latent growth mean was highest for the second planned missing

design (complete end points, 92%), and lower for the complete

data—reduced sample design (83%) as well as the first planned

missing design (81%). Power to detect the mean of a quadratic

growth trend had the same pattern: highest for the second planned

missing design (87%), and slightly lower for a complete data—

reduced sample design (85%) and lowest for the first planned miss-

ing design (81%).

Both Graham et al (2001) and Mistler and Enders (2012) only

examined power for a single parameter in latent growth models.

In the present study we investigated the efficiency of a range of

other model parameters in latent growth curves, including factor

loadings, means and variances of the latent intercepts and slopes,

and covariances between slopes.

We imposed three different planned missing designs to mea-

sure the effect of item-level and wave-level missingness on the

bias and efficiency of latent growth parameter estimates. First,

three-form missingness was applied to data at each wave. Second,

we imposed the wave-level missingness that Graham et al. (2001)

found to be most efficient, with 50% of the sample missing each of

waves 2–4, and 30% of the sample missing wave 5. Finally, we com-

bined item-level and wave-level missingness in the same design.

Method

Population

Complete, multivariate normal data were generated from means

and covariance matrices implied by the model shown in Figure 1

using population values from Little (2013) and Espelage et al.

(2011). The model examined associations between latent intercepts

and slopes of bullying and homophobic teasing. The value of the

correlation between the two slopes (.55 in the original data) was one

of the parameters we varied in the simulation; all other means, var-

iances, and covariances were held constant at the values displayed

in the figure (from Little, 2013). Each of the ten latent variables rep-

resenting the two constructs at five time points was indicated by

three observed variables. In addition, strong factorial invariance

(Meredith, 1993) was specified by fixing the observed variables’

loadings and intercepts equal across five time points. For exam-

ple, the population values of loadings for bullying were f0.865,

1.122, 1.103g at all time points, and the intercepts were f0.417,

–.111, –.036g. Strong factorial invariance is required when there

is a measurement model at each time point to ensure that the def-

inition of the construct does not change over time (see Little,

2013). Residual variances were not fixed to be equal across time

(i.e., strict invariance was not imposed), and residual variances

of the observed indicators were allowed to covary across the same

items over time. Values of factor loadings, residual variances, and

residual covariances are omitted from Figure 1 for clarity.

For each construct, the latent intercept had fixed loadings of 1.0

on the five first-order latent variables. The growth trends of the two

constructs were identified by fixing the slope loading to 0 at the first

occasion and to 1 at the second occasion; the slope loadings were

freely estimated at the third through fifth occasions. The population

values for these last three occasions were f1.3, –0.8, –0.6g and

f1.5, 0.7, 0g, for the bullying and teasing slopes, respectively. The

means of the first-order latent variables are fixed to zero. As a

result, the mean-level information about the constructs is com-

pletely represented by the latent intercepts and slopes. Means and

variances of the growth parameters are in Figure 1.

Within each type of planned missingness, we examined 15 con-

ditions that were formed by crossing two factors: three levels of the

latent slope correlation, �S1;S2 ¼ f:1; :3; :55g, and five levels of

sample size, n ¼ f100; 300; 500; 800; 1000g. We were particularly

interested in varying the latent slope correlation because it is argu-

ably the parameter of greatest substantive interest (e.g., Rhemtulla

& Tucker-Drob, 2011), and previous research has found that it is

typically estimated with very low power (Hertzog et al., 2006).

Thus, it is important to study the effects of planned missingness

designs on this parameter in particular to discover under what con-

ditions (e.g., with what size sample) it can be precisely estimated.

One thousand data sets were generated in each condition. Data

were simulated in R (R Core Team, 2013) using the simsem package

(Pornprasertmanit, Miller, & Schoemann, 2013) and then analysed

using Mplus 7.0 (Muthén & Muthén, 1998–2011).

Missing data

Missingness was imposed according to three different planned

missing designs (see Figure 2). In the three-form design (e.g.,
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Graham et al., 2006), each indicator of each construct at each occa-

sion was designated to come from a different item set, and therefore

to have a different pattern of missingness. The three indicators of

each construct within each time point were assigned to the three

item sets (A to C), so were missing a non-overlapping one-third

of data. This missingness was imposed by simply having the first

third of the simulated participants be missing A items, the second

third missing B items, and the last third missing C items. The com-

mon X set (i.e., items given to all participants) was not used in this

simulation for simplicity.

Second, we imposed the wave-missingness design shown in the

middle panel of Figure 2. This planned missing design was pro-

posed by Graham et al. (2001), who found that it led to the greatest

efficiency in estimating linear slopes, primarily because complete

data are concentrated in the first and final waves, with a large

amount of missing data in the middle waves. Because our model

does not fix the growth coefficients to be linear, it is possible that

Graham et al.’s pattern is not the ideal design for our model. How-

ever, there are still two practical reasons that this design might be

preferred. First, it includes complete data at the initial wave, which

allows researchers to ascertain complete demographic data from the

same time point from every participant, which is desirable for many

reasons (e.g., providing descriptive statistics and testing factorial

invariance based on a demographic variable such as sex are much

easier with complete data; and complete demographic data may

provide important information about subsequent unplanned missing

data). Second, this design imposes fewer missing data at the final

wave (wave 5), which may counteract some of the effects of attrition.

That is, attrition over the course of five waves may contribute to

missing data over and above the planned missing data design, so it

may be prudent to introduce less planned missingness at the last time

point. This wave-missing design has 36% planned missing data.

Finally, the combined design superimposed the two types of

missingness. The wave missingness design was implemented and,

on those occasions where the entire wave was not missing, a

three-form design was employed. The combined design led to a

total of 57% missing data. Missingness was imposed using the sim-

sem package.

Analysis

Simulated datasets were analysed using the model in Figure 1 in

Mplus 7.0. The latent basis coefficients (i.e., slope loadings), means

and variances of slopes and intercepts, and covariances among

slopes and intercepts were freely estimated. The effects coding

method was used for model identification (Little, Slegers, & Card,

2006), which means that the set of loadings for each first-order

latent variable was constrained to average 1.0 and the set of

observed variable intercepts averaged zero. Little et al. argued that

this method of identification results in factor means and variances

that are more interpretable, because they reflect the average across

indicators, rather than an arbitrarily chosen single indicator (as in

the marker variable identification approach).

Strong measurement invariance over time was imposed for each

construct. The loadings and residual variances of the ten first-order

latent variables were then estimated with these constraints. Resi-

dual variances of the 30 observed variables were freely estimated,

and the pattern of residual covariance shown in Figure 1 was also

freely estimated. All covariances not shown in Figure 1 were con-

strained to zero. Intercepts of the 10 latent factors were fixed to

zero, and the intercepts of the observed variables were freely esti-

mated (df ¼ 362).

Missing data were dealt with using full-information maximum

likelihood (FIML). FIML is a model-based approach that deals with

Figure 2. Planned missing data patterns. Each rectangle represents a data matrix where white refers to complete data, black to three-form missingness, and

grey to wave-level missingness. In (a) the three-form design, every participant is missing one-third of variables at each wave. In (b) the wave-level missing

design, every participant has complete data at the first wave and 90% of participants are missing two subsequent waves, such that 50% of observations are

missing in waves 2–4, and 30% of observations are missing at wave 5. In (c) the combined design, the two forms of missingness are overlaid.
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missingness in the same step that model parameters are estimated.

Using FIML therefore necessitates using item-level data in the

model (unlike multiple imputation, where items can be summed

to produce scale scores after imputation and before analysis).

However, it is not necessary that every item be included as a sep-

arate variable in the model; items in the same set will have the

same pattern of missing data and these can be summed or averaged

to form an item parcel. Using this trick, a long scale that is divided

into item sets for a planned missing design can be parceled into three

or four variables (one for each item set; see Little, Rhemtulla, Gib-

son, & Schoemann, 2013, for a justification of parcel use).

Outcome measures

For every condition we examined five outcomes: convergence rate,

parameter bias, standard error bias, relative efficiency, and power.

We describe each outcome below.

Convergence. Convergence is the proportion of generated datasets

that result in a proper solution. When FIML in Mplus failed to con-

verge upon a stable solution or when a solution produced an impos-

sible value (e.g., negative variance estimates), we coded it as a

convergence failure. In addition, some replications converged on

solutions that were technically admissible but clearly uninterpreta-

ble, such as standard error estimates in the hundreds. Such results

are also estimation failures because they are sufficiently extreme

that results are untrustworthy.

We removed outliers using the following procedure. First, any

replication that produced a standard error estimate (on any para-

meter) greater than 10 was flagged as an outlier and removed. This

initial step allowed us to remove the most extreme outliers that

could strongly affect our estimates of bias. This first step removed

between 0 and 63 replications out of 1000 across conditions (mean

¼ 11.0). Second, we computed the mean and standard deviation of

each parameter estimate and each standard error estimate across

replications within each condition, and used these values to con-

struct an outlier cut-off that was 10 SD away from the mean. Any

replication that had an estimate or SE outside this boundary was

removed. This step removed between one and 40 replications per

condition (mean ¼ 14.6). On average, this procedure removed

2.6% of replications per condition. In the end, removing outliers

had a barely perceptible effect on any of our results, except that

some of the observed bias was more extreme with outliers left in.

Smaller sample sizes, more missing data, and more complicated

models (e.g., those with more constraints) tend to produce higher

rates of nonconvergence. We predicted that smaller samples and

greater missing data rates would result in poor convergence, as the

curve-of-factors model is a quite complex model.

Parameter bias. Parameter bias is defined as

PRB ¼ ð
�̂
�� �Þ
�

where � is the population parameter value (e.g., a slope variance)

used in data generation and
�̂
� is the average estimated parameter

value across all converged replications for a given condition

(Collins, Shafer, & Kam, 2001; Graham, 2009). Positive bias

reflects estimates that are higher than expected, and negative

bias reflects estimates that are lower than expected. Absolute

values of parameter bias less than .05 are considered negligible

(Hoogland & Boomsma, 1998). We did not predict substantial

bias in any condition, because our estimating model was the true

population model, and the missing data were randomly distribu-

ted so that they should not introduce any systematic bias.

Standard error bias. Standard error bias (SEB) is the degree to

which standard errors accurately reflect the standard deviation of

parameter estimates

SEB ¼ ð
cSE � ESEÞ

ESE

where ESE is the empirical standard error (i.e., the standard devia-

tion of parameter estimates)

ESE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

�̂i � �
� �2

s
and n is the number of converged replications. The standard error

bias is considered acceptable if its absolute value is less than .10

(Hoogland & Boomsma, 1998).

Relative efficiency. Relative efficiency (RE) reflects the amount of

information loss that occurs as a result of missing data. It is com-

puted as a ratio of sampling variances (i.e., squared standard errors)

of the complete data estimates to the missing data estimates

RE ¼
ESE2

�; complete

ESE2
�; incomplete

where ESE2
�; complete is the squared empirical standard error of the

parameter with complete data, and ESE2
�; incomplete is the squared

empirical standard error of the parameter from the planned missing

design. RE ranges from 0 to 1, where higher values indicate a more

efficient estimate and, like any proportion, it can also be interpreted

as a percentage. RE can be used to compute ‘effective sample size’

by multiplying by the original sample size. For example, if a para-

meter has RE of .6, and sample size is 100, the estimate has the

same power that it would have had with no missing data and a sam-

ple size of 100� :6 ¼ 60. By the same logic, to have the same

power as the complete data design, we would need to increase the

sample size to n� ¼ 100=:6 ¼ 167 (Savalei & Rhemtulla, 2012).

Because RE is a ratio of sampling variances, it itself is invariant

to sample size.

It may be relevant to compare the efficiency of parameter

estimates in the PM design to the efficiency of a complete data

design with a reduced sample (Graham et al., 2001). For exam-

ple, a PM design with 36% missing data can be compared to a

complete data design with 36% fewer participants. This type of

comparison allows a direct comparison of efficiency per obser-

vation. A value of efficiency relative to a reduced sample design

(‘adjusted relative efficiency’) can be obtained by taking a ratio of

RE to the percentage of complete data; for example, if RE¼ .80 with

36% missing data, then adjusted relative efficiency is

REadj ¼ :8=ð1� :36Þ ¼ 1:25. In this case, we could conclude that the

PM estimate is 25% more efficient per observation than a complete data

design.

Power. Although RE reflects efficiency loss due to missing data, it is

not directly related to power. If an effect size is large enough, it is pos-

sible that the power to detect an effect with a cut-off of� ¼ :05 will be

very high, even with a large amount of missing data. In that case, it

might not matter that a particular planned missing design is only half
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as efficient as the complete data design, if it still has sufficient power.

For this reason, we look at the proportion of replications in which the

Wald test statistic Z ¼ �̂
.dSE�̂ is significant at � ¼ :05.

Results

Three-form missing

Convergence. When n ¼ 100, convergence rates ranged from 63–

68%; when n > 100, convergence was always higher than 95%.

Recall that in the three-form missing design, one-third of data were

missing. n ¼ 100 is already a small sample size for a latent curve-

of-factors model (Fan, 2003; Hamilton, Gagne, & Hancock, 2003;

Leite, 2007), and it surprised us that even 60% of replications con-

verged with 33% missing data. Even with complete data, conver-

gence rates were around 72% with n ¼ 100. Convergence was

helped by the fact that the analysis model was exactly true in the

population, whereas in real data one has some degree of misfit.

We do not discuss the results for n ¼ 100 further, because these

results can be quite skewed when 40% of the samples have been

removed, and because the low convergence rate suggests not to use

a planned missing design for correlated latent growth curve models

with an n so small.

Parameter bias. We examined bias of factor loadings, means and

variances of the latent intercept and slope, and covariance between

the latent slopes. Figure 3 shows standardized parameter bias for

complete data and each of the planned missing designs. Estimates

of the slope variance when n ¼ 300 had bias ranging from .08 to

.11 depending on the level of the slope correlation. As Figure 3

shows, this bias was only a few percent smaller in the complete data

condition; that is, three-form missingness did not have a noticeable

effect on parameter bias. For all other parameters and sample sizes,

bias ranged from –.01 to .06.

Standard error bias. Standard errors were estimated accurately in

all conditions, as bias was always within the –.10 to .10 range

(Figure 4). The worst bias observed was when n ¼ 300 and the

population value of the slope correlation was .10; in this condition

the SE bias of the latent slope covariance was –.07. Apart from

this value, SE bias ranged from –.04 to .01.

Relative efficiency. Figure 5 displays RE for six parameter types

by sample size for all planned missing designs. All parameters

Figure 3. Parameter bias. Where lines are not visible, they are overlapping around bias¼ 0. (a) Complete data; (b) three-form missing; (c) wave missing; (d)

combined missing. Horizontal lines at –.05 and .05 reflect bounds for acceptable bias.

428 International Journal of Behavioral Development 38(5)

 at UVA Universiteitsbibliotheek on July 31, 2014jbd.sagepub.comDownloaded from 

http://jbd.sagepub.com/


are plotted for the condition where the population slope correla-

tion is .55; other values of the slope correlation produced very

similar results. Measurement model parameters (e.g., factor

loadings) are most affected by the type of missingness imposed

in the three-form design, with RE around 40%. Factor loadings

are estimated based on the relations among the set of indicators.

When all participants miss one indicator out of three and each

pair of indicators has just one-third overlapping complete data,

estimates involving the relations among these indicators become

less precise.

In contrast, structural coefficients such as latent means,

variances, and covariances all had RE higher than .80. These para-

meters are estimated based on the relations among the constructs

over time. In the three-form design, every participant provides

data at each time point, so estimates involving relations among

constructs over time can be estimated with high precision. RE

of .80 means that these parameters were less than 20% less effi-

cient than complete data, even though 33% fewer data were col-

lected in the three-form design. To directly compare the

efficiency of the PM parameters to a complete design with

reduced sample size, we can compute adjusted relative efficiency

when RE ¼ .80: REadj ¼ :80=ð1� :33Þ ¼ 1:2. In other words, these

parameters are all at least 20% more efficient, per piece of data

collected, than a complete data design. The grey horizontal lines in

Figure 5 reflect the RE of a reduced sample complete data design.

Power. Figure 6 displays power for each parameter type by sample

size for complete data and each planned missing data design. With

complete data, power to detect loadings and means and variances of

the latent intercept is 100% at all sample sizes. Power to detect

slope means is about 70% when n ¼ 300 and reaches almost

100% when n ¼ 500. Power to detect slope variances ranges from

55% when n¼ 300 to 94% when n¼ 1000. Power to detect the cov-

ariance between slopes is affected by both sample size and by the true

slope correlation: when � ¼ :1, power is virtually zero and only

reaches 13% when n ¼ 1000; when � ¼ :3, power begins at 10%
(n¼ 100) and reaches 83% (n¼ 1000); when � ¼ :55, power begins

at 40% (n ¼ 100) and reaches 99% when n ¼ 800. When three-form

missingness is applied (top right panel of Figure 6), power is on aver-

age 4.5% less than with complete data (0–12% less).

Wave missingness

Convergence. Convergence rates with the wave-missing design

were lower than with the three-form design. With n ¼ 100,

Figure 4. Standard error bias. (a) Complete data; (b) three-form missing; (c) wave missing; (d) combined missing. Horizontal lines at –.1 and .1 reflect

bounds for acceptable bias.
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convergence was less than 5%, and with n ¼ 300, this rose to 80%.

These convergence rates suggest that wave-level missingness is

more problematic for model fitting than three-form missingness,

because the two designs have roughly equal rates of missing data.

The wave-missing design imposes 36% missing data, only slightly

higher than the 33% imposed in the three-form design, yet conver-

gence rates suffer much more. At n � 500, convergence rates were

above 90%.

Parameter bias. Bias of factor loadings and means of latent

intercepts and slopes was less than .01 at every sample size (see

Figure 3). Estimates of the slope variance showed bias greater

than 5% at all levels of n, and more than 10% bias when n was

500 or smaller. The degree of bias of the slope covariance

increased with smaller values of the slope covariance. For

example, when n ¼ 300 and � ¼ :55, slope covariance bias was

.18, which rose to .54 when � ¼ :1 (not shown). The degree of

standardized bias, however, was not uniform across the two

slopes, but instead it was much higher in estimates of the var-

iance of the first latent slope (bullying) than the second slope

(teasing). This difference is due to differences in the population

values of the two slope variances. The population slope variance

of bullying was .01, which value is in the denominator of the

standardized bias computation, so absolute bias of just .005

translates into 50% bias. In contrast, the population slope var-

iance of teasing was .11, so an estimate would have to be off

by .55 to result in 50% bias. While the standardized bias metric

helps to make bias comparable across parameters, in the case of

very small population values it may overstate the degree of bias.

Standard error bias. SE bias was negligible with the following

exceptions: when n � 500, the SE of the slope covariance was

underestimated by 9–17% and the SE of the slope variance was

underestimated by 16–21%, with greater bias corresponding to

smaller values of the slope covariance (Figure 4). In addition, when

n ¼ 500 and � ¼ :55, SE of the slope covariance had –11% bias,

and when n ¼ 500 and � ¼ :55, SE of the slope variance had –10%
bias. SE bias appeared on the same parameters where parameter esti-

mate bias appeared, that is, slope variances and covariances, particu-

larly the variance of the bullying slope. As with parameter bias, SE

bias tended to be more pronounced at small sample sizes and when the

slope correlation was smaller.

Negative SE bias means that confidence intervals around para-

meter estimates will fail to capture the true parameter value 95% of

the time. This type of bias also results in liberally biased signifi-

cance tests (i.e., higher than nominal rates of type I error).

Figure 5. Relative efficiency. (a) Three-form missing; (b) wave missing; (c) combined missing. Horizontal lines at .33, .36, and .57 reflect the percentage

missing values for three-form, wave, and combined missing, respectively.
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Underestimated SEs are particularly problematic when the para-

meter estimates themselves are biased, as is appearing in these

results—a substantially biased parameter estimate coupled with a

too-small standard error can result in confidence intervals that vir-

tually never contain the parameter value that is being estimated. For

all parameters, as sample size increased, SE bias shrunk to 0.

Relative efficiency. The pattern of RE in the wave-missing design dif-

fered substantially from the three-form design (see Figure 5). In the

three-form design, measurement model parameters (e.g., factor load-

ings) had poor RE but structural model parameters (e.g., latent inter-

cept and slope variances) had high RE. In the wave-missing design,

missingness happens at the level of measurement occasions rather

than items, so the structural model parameters that involve estimating

relations across constructs over time suffer more efficiency loss.

Means and variances of the latent intercepts displayed the high-

est RE at around .88 and .77 respectively (REadj ¼ 1:38 and 1.40,

respectively) across all sample sizes, and factor loadings were also

very efficiently estimated at RE of .71 (REadj ¼ 1:11). These values

represent a net increase in efficiency per piece of data. In contrast,

RE for the variances and covariances among the latent growth para-

meters ranges from .14 to .39, representing a substantial loss in effi-

ciency due to the wave-missing design (REadj ¼ 0:22 to 0.61). These

values increase slightly with increasing n, which is unexpected but

may reflect additional variability in parameter estimates that results

from greater instability of the model at small sample sizes.

Power. Power loss compared to the three-form and complete data

designs can be seen in Figure 6. As with complete data, power to

detect significant factor loadings and means and variances of the

latent intercepts is 100% for every value of n. Unlike with complete

data or the three-form design, power of every other parameter

type does not approach 100% even when n ¼ 1000. In particular,

the latent slope covariance does not achieve 50% power until its

population value is .55 and n ¼ 1000. In addition, latent slope var-

iances reach about 60% power when n¼ 1000. One of the principal

reasons for carrying out a latent growth curve model is to detect sig-

nificant individual variability in the rate of change over time. These

results suggest that imposing wave missingness may make this goal

significantly more difficult to achieve.

Combined design

The combined design applied both wave-level missingness as well

as item-level missingness for all non-missing time points, resulting

in 57% missing data.

Figure 6. Power. (a) Complete data; (b) three-form missing; (c) wave missing; (d) combined missing. Lines representing intercept variances, intercept

means, and loadings overlap at power ¼ 1.0.
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Convergence. The combined design showed slightly worse conver-

gence than the wave-missing design. With n¼ 100, no models con-

verged. With n ¼ 300, convergence was 65%. It was not until

n � 500 that convergence reached 90%. We present all results for

n � 300 but we caution the reader that the combined model may

simply have too much missing data for it to be recommended with

n smaller than 500.

Parameter bias. The combined design showed the same pattern of

parameter bias as the wave-missing design, only more pronounced

(see Figure 3). Latent slope variances, especially that of the bully-

ing construct, showed high positive bias at n ¼ 300 and continued

to be positively biased at every sample size studied. The latent slope

covariance showed substantial bias at n¼ 300 (ranging from 28–85%,

compared to 18–54% with only wave missingness), which decreased

to 1–12% bias at n ¼ 500.

Standard error bias. In the combined design, there was again sub-

stantial negative bias of the slope covariance parameter at the

smallest sample size (n ¼ 300), where bias ranged from –19%
to –26%. In addition, the latent slope variances bias ranged from

–23% to –25%. These values continue the trend seen in the wave-

missing design but are more dramatic. At the next larger sample

size, n ¼ 500, SE bias of both these parameters dropped to within

the 10% range.

Relative efficiency. The combined missingness design has missing-

ness at both the item level (like the three-form design) and the occa-

sion level (like the wave-missing design) and, as a result, both

measurement parameters and structural parameters suffer substan-

tial efficiency loss (see Figure 5). As noted earlier, in the combined

missingness design just 43% of data points are collected (the other

57% are assigned to be missing) so RE values higher than .43 can be

considered a net gain in efficiency per piece of data collected. In

this design, only the means and variances of the intercepts resulted

in a net efficiency gain per data point, with around .62 RE

(REadj ¼ 1:44). Means of the latent slopes had RE of 43% across

all sample sizes, roughly equaling the number of complete data

points (REadj ¼ 1:00).

Factor loadings display low RE just as they did in the three-form

missing design, but worse (RE is around 31%; REadj ¼ 0:72), and

variances and covariances of latent slopes display RE that varies

from .08 to .33. As in the wave-missing design, RE is lower in

smaller samples. When n ¼ 500, RE is .22 for variances of latent

slopes (REadj ¼ :51), and .21 for the covariance between slopes

(REadj ¼ :49). The effect of these low RE values becomes apparent

when we examine power.

Power. Power in the combined missingness design was again per-

fect for means and variances of the latent intercepts and for factor

loadings. For other parameters, power was on average 4% lower

than in the wave-missing design. The most substantial drop in

power compared to wave missingness was the power to detect a

slope covariance when the population correlation value was .55 and

n � 800, when power was 10–12% lower. In general, though, add-

ing item-level missingness on top of wave missingness did not

much affect power. Compared to the three-form design, however,

power was on average 27% lower, and as much as 62% lower for

the slope covariance with larger n. As with the wave-missingness

design, then, these results suggest that unless n is larger than the

sample sizes examined here, the combined missingness design will

make it difficult to detect individual variability in rates of change

and covariation among latent growth parameters.

Discussion

We investigated the behavior of parameter estimates in a correlated

latent growth curve model using three planned missing designs:

three-form missingness (missing items at each time point resulting

in 33% missing data), wave missingness (missing measurement

occasions resulting in 36% missing data), and both of these com-

bined (resulting in 57% missing data). The results revealed that

with sufficiently large sample sizes (n ¼ 300 for three-form miss-

ingness and n ¼ 500 for wave or combined missingness), conver-

gence rates are high and most parameter estimates and standard

errors show no substantial bias.

A primary concern about using planned missing designs is

what effect they will have on the power to detect significant para-

meter values, such as individual variability in initial levels of a

factor and in rates of change (i.e., latent intercept and slope var-

iance), and covariation between rates of change across two para-

meters (i.e., latent slope covariance). We found that relative

efficiency varied across types of parameters and planned missing

designs. Structural parameters (e.g., means, variances, and covar-

iances of latent intercepts and slopes) had high efficiency relative

to a complete data design (RE) when missingness was imposed at

the item level (i.e., in the three-form design), but much lower RE

when it was imposed at the wave level (i.e., in the wave or com-

bined missing designs). In contrast, measurement model para-

meters (e.g., factor loadings) had high relative efficiency in the

wave-missing design.

The results reveal that imposing missing data at the item level

using a three-form design has minimal effects on relative effi-

ciency and power. In terms of all outcomes investigated here—

convergence, parameter bias, standard error bias, relative effi-

ciency, and power, the three-form design results looked very sim-

ilar to complete data, despite containing only 66% of the data

points in the complete data design. The only parameter that was

substantially affected was factor loadings, which are typically not

the focus of a latent growth curve model. Moreover, we have

noticed that the effects coding method of identification is often

less efficient than other methods of identification for evaluating

the significance of item loadings and intercepts, so other identifi-

cation methods (i.e., fixed loading, fixed factor variance) may

have higher efficiency.

In contrast to item-level missingness, imposing missing data on

entire measurement occasions can substantially diminish power for

certain very important parameters. In particular, variances and cov-

ariances among slopes had dramatically diminished efficiency and

very low power. This finding contrasts with Graham et al. (2001),

who reported that any wave-missing design resulted in higher

power per observation than complete data designs; however, their

investigation focused on power to detect a regression coefficient

predicting the latent slope from a fully observed grouping variable.

It stands to reason that this parameter would have higher power in a

planned missing design because only the dependent variable (slope

variance) is affected by missingness. Based on results presented

here, unless effect sizes are large (e.g., substantial slope variability

is expected) or the sample size is larger than those examined in this

paper (i.e., larger than 1000 participants), wave missingness is not

recommended.
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Limitations

The model examined here was based on one particular set of para-

meter estimates. Though we varied the strength of the correlation

among latent slopes, we did not test the effects of varying factor

loading strengths, or variances of latent intercepts and slopes. The

slope variances in our model were small, and this surely affected

the low power observed in all conditions. In a population with much

higher rates of individual variability in rates of change, we may

have concluded that even the combined missingness design could

be recommended. Nonetheless, the results presented here give an

idea of the scope of what RE and power associated with the two

designs can look like for latent growth curve models.

We assessed power by examining the rejection rates of a Wald

Z-test comparing the parameter values to zero. Hertzog et al. (2008)

compared the power of several different methods for testing the sig-

nificance of latent growth curve parameters and found that the most

powerful method is the generalized variance test where a nested

model likelihood-ratio test is used to compare the log-likelihood

of the LGM to a constrained version where the latent slope variance

and its covariances with other factors are constrained to zero (see

also Gonzalez & Griffin, 2001). In the present model, the general-

ized variance test would result in a four-degree-of-freedom chi-

square test, because four parameters (slope variance of one con-

struct, and its covariance with the intercept of the same construct

and the slope and intercept of the second construct) would be simul-

taneously constrained to zero. Hertzog et al. (2008) found that as

the population value of these covariance parameters increases, the

power of this generalized test can become much higher than that

of the Wald test on the slope variance. We did not examine the per-

formance of this generalized variance test in the present paper, and

it is not clear to what extent it would have resulted in greater power

than the Wald test.

The present model used latent basis curves, where the slopes can

take on any shape. Although this model is often preferable to a lin-

ear growth model because it does not force a linear trajectory of

change on phenomena that are frequently nonlinear, freeing those

slope loadings may affect the power to detect individual variability

in change over time. Mistler and Enders (2012) showed that a PM

design with complete data at the first and last measurement occa-

sions resulted in much greater power to detect the mean of a linear

growth trend than a quadratic growth trend. This makes intuitive

sense because, once the ends of a linear trajectory are anchored,

data in between is not necessary; in contrast, anchoring the ends

of a quadratic trajectory is not sufficient to identify the shape of a

quadratic trend. Pilot work conducted during this investigation

found that the relative efficiency of structural parameters in a linear

latent growth curve model in the wave and combined missing

designs was similar to the latent basis model used here, but it is

nonetheless plausible that power could be higher when the shape

of the growth trajectory is fixed to a parametric functional form.

Conclusion

These findings strongly support the use of item-level missingness

(e.g., the three-form design) in longitudinal growth curve modeling.

Support for wave-level or combined item-and-wave-level missing-

ness is much more limited. However, wave level missingness has

other potential benefits, which may sometimes trump the negative

findings presented here. First, the cost savings of wave missingness

may be much greater than those of item-level missingness; for

example, the money saved by having 500 participants answer

75% of the items (using a three-form design) is unlikely to be as

great as that saved by having to test only 350 participants at each

wave (using a wave-missing design). But the relative efficiency

results suggest that when a wave-missing design is employed, the

efficiency loss outweighs the cost savings. Therefore, wave miss-

ingness employed in order to cut costs may not be a winning pro-

position. Second, wave-missing designs have the potential to

reduce retest or practice effects that arise from repeated measure-

ment over time. If retest effects are a concern, it is possible to

minimize retest effects within the context of the three-form design

by assigning different forms at each occasion (see Jorgensen et al.,

in press).
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