
Psychological Methods
Population Performance of SEM Parceling Strategies Under
Measurement and Structural Model Misspecification
Mijke Rhemtulla

Online First Publication, February 1, 2016. http://dx.doi.org/10.1037/met0000072

CITATION

Rhemtulla, M. (2016, February 1). Population Performance of SEM Parceling Strategies Under
Measurement and Structural Model Misspecification. Psychological Methods. Advance online
publication. http://dx.doi.org/10.1037/met0000072 



Population Performance of SEM Parceling Strategies Under Measurement
and Structural Model Misspecification

Mijke Rhemtulla
University of Amsterdam

Previous research has suggested that the use of item parcels in structural equation modeling can lead to
biased structural coefficient estimates and low power to detect model misspecification. The present
article describes the population performance of items, parcels, and scales under a range of model
misspecifications, examining structural path coefficient accuracy, power, and population fit indices.
Results revealed that, under measurement model misspecification, any parceling scheme typically results
in more accurate structural parameters, but less power to detect the misspecification. When the structural
model is misspecified, parcels do not affect parameter accuracy, but they do substantially elevate power
to detect the misspecification. Under particular, known measurement model misspecifications, a parcel-
ing scheme can be chosen to produce the most accurate estimates. The root mean square error of
approximation and the standardized root mean square residual are more sensitive to measurement model
misspecification in parceled models than the likelihood ratio test statistic.

Keywords: structural equation models, parcels, misspecification, power, fit indices

When fitting a structural equation model with a large number
of variables, it can be useful to reduce model complexity by
creating parcels. Parcels are formed by summing or averaging
scores on two or more indicators of a latent factor, with the goal
of reducing the number of indicators of the latent factor. This
practice is common but controversial. In particular, proponents
of parceling have noted that model fit tends to improve,
whereas critics have argued that this improved fit can mask
serious model misspecification. In particular, simulation studies
have found that misspecification in the measurement model
(e.g., correlated residuals and cross-loadings) can lead to the
unfortunate combination of biased estimates and good fit. In the
present article, I examine the effect of parceling on three types
of misspecification, including measurement model misspecifi-
cation within a latent variable (e.g., unmodeled method vari-
ance), measurement model misspecification across latent vari-
ables (e.g., unmodeled cross-loadings), and structural model
misspecification (e.g., misdirected causal arrows). I examine
asymptotic bias in structural parameter estimates, power to
detect model misspecification, and population fit statistics in
models based on items and parcels.

My goal is to outline under what conditions different strate-
gies—including using the original items, two types of parcels, and
scale scores—lead to desirable combinations of bias and power.
Studying population performance reveals the clearest possible
picture of these effects.

What Parcels Are Used For

When the research goal is to assess the measurement properties
of a scale, parceling is never recommended for the simple reason
that it is impossible to study the properties of individual items once
they are parceled. When the research goal is to assess relations
among constructs, however, it may be appropriate to simplify the
measurement model by combining subsets of items into parcels, or
by summing all items to create scale scores.

Parceling results in smaller models, indicators with better dis-
tributional and psychometric properties, and, frequently, improved
model fit. These results are typically seen as benefits of using
parcels, and are commonly cited as justifications for modeling
parcels rather than items (Bandalos & Finney, 2001; Little, Cun-
ningham, Shahar, & Widaman, 2002; Matsunaga, 2008; Williams
& O’Boyle, 2008). But each of these perceived benefits has been
disputed.

One of the most common reasons for parceling is to reduce the
ratio of variables to sample size (Bandalos & Finney, 2001; Wil-
liams & O’Boyle, 2008). Parceling also dramatically reduces the
number of model degrees of freedom. One benefit of a smaller
model is a more accurate test statistic, because the maximum
likelihood chi-square test statistic is upwardly biased when large
models are fit to small samples (Anderson & Gerbing, 1984;
Boomsma, 1982; Marsh, Hau, Balla, & Grayson, 1998; Moshagen,
2012). Another possible benefit of a smaller model is a greater
likelihood that the model will converge to a stable solution (Little
et al., 2002; West, Finch, & Curran, 1995). Although simulation
studies have shown that convergence problems are actually less
likely to arise with more indicators per latent factor (Anderson &
Gerbing, 1984; Boomsma, 1982; Marsh et al., 1998), these simu-
lations assume that the fitted model is true in the population. It
remains possible that parceling increases the likelihood of model
convergence by correcting some of the misspecification in an
item-level model.

Correspondence concerning this article should be addressed to Mijke
Rhemtulla, Department of Psychology, Programme Group Psychological
Methods, University of Amsterdam, Weesperplein 4, 1018XA Amsterdam,
the Netherlands. E-mail: m.rhemtulla@uva.nl
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A second common justification for parceling is that it results in
variables with better distributional properties (Bandalos, 2002;
Bandalos & Finney, 2001; Little et al., 2002; Nasser & Takahashi,
2003; West et al., 1995; Williams & O’Boyle, 2008); that is, parcel
data tend to be more continuous and more normal than item data.
The default estimation method in all structural equation modeling
(SEM) software is normal-theory maximum likelihood, which
assumes continuous normal data. To the extent that this assump-
tion is violated, default standard errors and test statistics will be
incorrect, and parameters will be underestimated when the data
have few categories (Babakus, Ferguson, & Jöreskog, 1987;
Green, Akey, Fleming, Hershberger, & Marquis, 1997; Muthén &
Kaplan, 1985). Bandalos (2002) found that parceling can amelio-
rate these estimation problems. On the other hand, all SEM soft-
ware has implemented robust standard error and test statistic
computation for both continuous nonnormal data (i.e., maximum
likelihood with robust standard errors and scaled test statistic;
Satorra & Bentler, 1994) and for ordinal data (i.e., unweighted or
diagonally weighted least squares estimation with mean-and-
variance adjusted test statistic; B. O. Muthén, 1993; B. O. Muthén,
du Toit, & Spisic, 1997). These methods tend to perform well with
ordinal and nonnormal data except under extreme violations of
normality (Bandalos, 2008; Rhemtulla, Brosseau-Liard, & Savalei,
2012); thus, this particular justification for parceling may be in-
sufficient (Yang, Nay, & Hoyle, 2010).

A third common justification for parceling is that parcels tend to
have better psychometric properties than items (Bandalos &
Finney, 2001; Williams & O’Boyle, 2008). Parcels are more
reliable, and thus have higher standardized factor loadings and less
residual variance (Little, Rhemtulla, Gibson, & Schoemann, 2013;
Yuan, Bentler, & Kano, 1997). Many authors have argued that
these properties translate to more stable parameter estimates and
better convergence for parceled models than item-level models
(Landis, Beal, & Tesluk, 2000; Little et al., 2002; Matsunaga,
2008). MacCallum, Widaman, Zhang, & Hong (1999) found that
these properties result in higher convergence rates, more accurate
parameter estimates, and lower sampling variability. However, the
same study also showed that, holding reliability constant, having
more indicators per factor leads to similar benefits—so there is
evidence that parceling should lead to better performance (because
parcels are more reliable) and that it should lead to worse perfor-
mance (because it is better to have more indicators). Marsh et al.
(1998) studied this trade-off directly and found no difference in
model convergence, parameter accuracy, or efficiency of factor
correlations whether parcels or items were used (see also Alhija &
Wisenbaker, 2006). Thus, there is no compelling evidence that
model convergence, accuracy, or efficiency is actually improved
by the better psychometric properties of parcels.

A final frequently cited reason for using parcels is improved
model fit (Bagozzi & Heatherton, 1994; Gribbons & Hocevar,
1998; Landis et al., 2000; Takahashi & Nasser, 1996; Thompson &
Melancon, 1996). This is the most contentious rationale for parcel
use, for two reasons. First, parcels can mask misspecification in
measurement model parameters, leading to biased estimates of
factor loadings (Hall, Snell, & Foust, 1999; Kim & Hagtvet, 2003)
and measurement invariance (Meade & Kroustalis, 2006). But
even the strongest proponents of parceling agree that parcels
should not be used if the goal is to investigate the measurement
properties of a set of items (e.g., Little et al., 2002, 2013). Second,

parceling may mask measurement model misspecification, such
that bias in structural model parameter estimates goes unnoticed
(Bandalos, 2002, 2008; Hall et al., 1999; Rogers & Schmitt, 2004).
I consider the evidence for this claim after briefly describing the
theoretical framework.

The Effect of Parcels on Model Misspecification

Parcels are created by summing or averaging scores on two or
more items to create new variables, to which a model is fitted. The
vector of parcel scores for an individual, Xparcel,i � AXitem,i, is a
function of the k � 1 vector of item scores and a p � k allocation
matrix, A, which specifies which items belong to which parcels,
where k is the number of items and p is the number of parcels. In
a structural equation model, item scores are modeled as functions
of a set of latent factors: Xitems,i � �items � � �items,i, where �items

is a k � m factor loading matrix relating k items to m latent factors,
� is an m � 1 vector of latent factors, and �items,i is a k � 1 vector
of item residuals (Jöreskog & Sörbom, 1996).

Let �parcels � A�items be the p � m parcel factor-loading
matrix, and �parcels,i � A�items,i be the p � 1 vector of parcel
residuals, then the parcel level measurement model is Xparcels,i �
�parcels � � �parcels,i. For both item and parcel models, the latent
factors are related to each other via a structural model, � � B� �
�, where B is an m � m matrix of regression coefficients that relate
latent variables to each other and � is an m � 1 vector of latent
variable residuals. The model implied covariance matrix of items is
�items��� � �items�I � B��1 ��I � B���1��items � 	items, where � is
an m � m latent variable covariance matrix, 	items is a k � k residual
covariance matrix, and I is the identity matrix. The corresponding
covariance matrix of parcels is �parcels��� � �parcels�I � B��1 �
�I � B���1��parcels � 	parcels, where 	parcels � A	itemsA= is a p � p
matrix of parcel residuals. Thus, measurement model parameters in �
and 	 differ for items and parcels, whereas structural model parameters
in B and � do not.

Although B and � are not affected by parceling, constraints
placed on �̂ and 	̂ for the purposes of estimating the model can
be more or less appropriate for parceled versus item models.
Differential misfit in the measurement model means that the latent
variables themselves are different, which leads to differences be-
tween B̂items and B̂parcels, and between �̂items and �̂parcels. For
example, if several items that share residual covariance are allo-
cated to the same parcel, the shared variance that belonged to
off-diagonal elements of 	items will belong to the diagonal of
	parcels. If this residual covariance is not modeled in 	items, then
some of that shared variance will become part of the latent variable
in the item model but not the parceled model, and the item model
will show worse fit than the parceled model. On the other hand, if
several indicators of a latent factor all share a small amount of
variance with another latent factor, and these items are allocated to
the same parcel, the resulting parcel will have an even greater
tendency to cross-load. That is, several small misspecifications in
�̂items will be repackaged into one big misspecification in �̂parcels.
By adjusting or reallocating measurement misfit, parceling can
change the latent variables that are identified, and thereby affect
structural model parameter estimates.

Research investigating the effect of parceling on bias and model
fit have compared two kinds of parcels. Isolated parcels combine
items that share the same sources of variance; for example, items
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that all load on an (unmodeled) group factor are placed in the same
parcel. By combining similar items together, a set of isolated
parcels are maximally different from each other. In contrast, dis-
tributed parcels distribute items that share the same sources of
variance across parcels, creating a set of parcels that are maximally
similar to each other.1 A common factor modeled on a set of
isolated parcels will have smaller variance than one modeled on a
set of distributed parcels, because isolated parcels have less in
common with each other than distributed parcels. These strategies
will have different effects on structural parameter estimates and
the degree of model misfit; which strategy is preferable depends on
the type of measurement model misspecification.

Simulation studies have confirmed that when a subset of item-
level indicators of a factor share a secondary source of variance
(e.g., method variance) that is unrelated to other variables in the
model, isolated parceling can isolate that secondary variance and
remove it from the structural model (Hall et al., 1999). In this
situation, both distributed parcels and items should result in more
bias than isolated parcels, though no research has yet examined
how items compare to parcels in this context. In terms of model fit,
Hall et al. (1993) found that despite differences in bias, both
isolated and distributed parcels resulted in well-fitting models:
Isolated parcels fit well because the secondary variance is rele-
gated to a parcel residual, and distributed parcels fit well because
the secondary variance is shared across all parcels and thus be-
comes part of the latent variable. In contrast, a model based on the
original items would be expected to fit poorly, because the sec-
ondary source of variance is neither isolated in a single indicator,
nor is it shared across all of them.

When the secondary variance source is related to other vari-
ables in the model (e.g., method variance affects two latent
variables), some research has found that isolated parcels can
intensify the effect of secondary variance, resulting in worse
bias than distributed parcels (Bandalos, 2002, 2008), but other
research has found that both isolated and distributed parcels
result in similar levels of bias (Hall et al., 1999). Bandalos
(2002) found that item-based models result in the same high
degree of bias but greater model misfit than isolated parcels.
Several studies have found that distributed parcels tend to result
in relatively well-fitting models, making it difficult to detect
measurement model misspecification (Bandalos, 2002, 2008;
Hall et al., 1999; Rogers & Schmitt, 2004).

Although the simulation literature reveals some intuitive
findings, it is nonetheless difficult to draw broad conclusions
from these results. These studies have typically examined only
one or two models with a fixed set of parameter values, making
it difficult to generalize results to other types of misspecifica-
tions. Moreover, they have frequently simulated ordinal data,
making it difficult to distinguish bias due to violations of the
normality distribution from that due to parceling (Bandalos,
2008). Other studies have considered empirical parceling
schemes, which only partially achieve the effects of isolated or
distributed parceling (e.g., Rogers & Schmitt, 2004). Only one
study has compared bias resulting from item models with parcel
models (Bandalos, 2002). No study has systematically com-
pared item solutions with parceled solutions across multiple
types of misspecification, nor has any study examined the
effects of parceling on structural model misspecification.

Overview

The present study examines the repercussions of fitting a mis-
specified latent mediation model to population item, parcel, and
scale data, in terms of bias, model fit, and power to detect a range
of misspecifications. By exploring the effects of parceling under a
range of common model misspecifications, my aim is to reveal
general principles of how and why parceling can exacerbate or
diminish the effects of model misspecification compared with
items and compared with alternate parceling schemes.

Studying population performance has several advantages over
Monte Carlo simulation (Reise, Scheines, Widaman, & Haviland,
2013; Rhemtulla, Savalei, & Little, 2014; Savalei, 2012). For one,
results are more precise than those based on even thousands of
simulated replications.2 Second, the population noncentrality pa-
rameter can be used to compute power for an arbitrary range of
sample sizes, giving a precise estimate of the sample size required
to achieve sufficient power. Third, because the population ap-
proach is less computationally demanding (as no sample data are
generated or analyzed), it is possible to investigate a more com-
prehensive set of parameter values. The reader should keep in
mind, however, that the results of population explorations do not
include sampling variability; that is, the present results indicate the
levels of bias and model fit that one would expect to see on
average, but not necessarily in any given finite sample.

In three studies, I consider three ways in which to misspecify a
structural equation model. First, the measurement model of any
single construct could be wrong if the shared variance among the
set of indicators cannot be fully explained by a single latent
variable; that is, more than one source of shared variance affects
the set of indicators. In addition, none of these sources also affect
other variables (latent or observed) in the model. For example, the
true model might be a two- (or more) factor model, a bifactor
model, a higher order model, or a model with correlated residuals.
Given this type of misspecification, isolated parceling combines
items that share secondary variance, so that the secondary variance
(unshared with anything else in the model) gets relegated to parcel
residuals and is thus removed from the structural model. Distrib-

1 Virtually every parceling strategy that has been proposed is a variant of
one of these strategies: Radial parceling (Cattell, 1956; Cattell & Burdsal,
1975), correlational parceling (Landis et al., 2000; Rogers & Schmitt,
2004), item-to-construct balanced parceling (Little et al., 2002), domain-
representative parceling (Coffman & MacCallum, 2005; Kishton & Wida-
man, 1994), and single factor analysis parceling (Mathieu & Farr, 1991) all
aim to create maximally similar parcels (i.e., distributed parcels), whereas
unidimensional parceling (Kishton & Widaman, 1994), exploratory factor
analysis parceling (Landis et al., 2000), and empirically equivalent parcel-
ing (Landis et al., 2000) all aim to maximize within-parcel similarity (i.e.,
isolated parcels).

2 Population results from a single level of misspecification and sample
size in Model 1A were successfully replicated via simulation (1,000
replications with N � 400). The simulation yielded parameter estimates
that were identical to three decimal places, average sample root mean
square error of approximation (RMSEA) and comparative fit index (CFI)
that followed the same pattern of results and typically matched to two
decimal places, and average standardized root mean square residual
(SRMR) values that were higher (due to sampling variability) but also
followed the same pattern of results. Power matched to within 1% for scale
and parcel models, but item-level power was higher in simulated data due
to the known upward bias in the test statistic when the number of manifest
variables is large (Moshagen, 2012).
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uted parceling, in contrast, distributes items that share secondary
variance across multiple parcels, so that the secondary variance
becomes part of the common factor variance.

Study 1 considers a two-factor model, in which both sources of
variance are equally relevant to the latent construct under investi-
gation, and a one-factor model in which a subset of items are
affected by a method factor, which is irrelevant to the construct. In
the first case, it is desirable that a modeled factor contains both
sources of variance, so distributed parcels are expected to mini-
mize the bias to structural model parameters; the degree of bias
produced by isolated parcels relative to items is unclear. In the
second case, it is desirable that the method variance not be in-
cluded in the modeled factor, so isolated parcels are expected to
minimize bias, and the degree of bias produced by distributed
parcels relative to items is unclear. In both cases, items are ex-
pected to result in higher power than parcels (Bandalos, 2002).

Study 2 considers measurement model misspecification that is
due to a secondary source of variance that is shared with indicators
of another construct. For example, the true model could include
cross-loadings, in which indicators of one factor are directly af-
fected by another factor, correlated residuals across indicators of
two factors, or a method factor that affects indicators of multiple
constructs. When multiple items are affected, isolated parcels
combine several small misspecifications into one bigger one. This
strategy has been found to result in higher power than distributed
parceling (Bandalos, 2002, 2008; Hall et al., 1999), in which small
misspecifications are spread across several parcels, diffusing the
misspecification. It is not clear based on previous research or
theory how the two parceling strategies should compare with each
other or to items with respect to bias.

Finally, Study 3 considers misspecification in the structural
model, when the measurement model is correctly specified. As
explained earlier, misfit stemming from the structural model
should not be affected by parceling. Any misspecification in the
structural model should remain when parcels are employed; how-
ever, power to detect the misspecification may differ (Ledgerwood
& Shrout, 2011).

Method

Population and Fitted Models

In each condition, the population generating model introduced
some misspecification to the latent mediation model depicted in
Figure 1 (top; these misspecifications are described in detail in
following sections). The latent mediation model is a simple struc-
tural equation model that captures a very common hypothesis in
psychological research (e.g., Rucker, Preacher, Tormala, & Petty,
2011). The model is just complex enough to support a range of
misspecification types, including correlated residuals, cross-
loadings, and structural path misspecification. Standardized pri-
mary factor loadings were always .5, reflecting a situation in which
researchers may be inclined to form parcels to increase the reli-
ability of the indicators. All other parameters values for the item-
level population model were chosen to result in approximately the
same degree of misfit in the item-level model across conditions
(population root mean square error of approximation [RMSEA] �
.023). The required sample size to reach 80% power to detect the
misspecification in the item-level model by the chi-square test of

exact fit, in all conditions, was about 400. In addition, for each
model, a single parameter involved in the misspecification was
varied continuously over a large range of values to reveal the effect
of the degree of misspecification on parameter bias.

Parcel and scale covariance matrices were obtained by pre- and
postmultiplying the item covariance matrix by one of three allo-
cation matrices to create three 4-item parcels per factor: isolated
parcels allocated the first four, next four, and last four indicators
of each latent construct to a parcel; distributed parcels allocated
indicators 1/4/7/10, 2/5/8/11, and 3/6/9/12 of each latent construct
to a parcel, and scales combined all indicators of each latent factor
into a single composite. Proponents of parceling have recom-
mended using exactly three parcels per latent variable because it
results in greatest model reduction while still allowing each latent
variable to be locally identified (Little, 2013). However, to test the
generality of results, all analyses were also conducted with four
3-item parcels per factor. Four isolated parcels were formed by
allocating indicators 1–3, 4–6, 7–9, 11–12 of each factor to
parcels; four distributed parcels were formed by allocating indica-
tors 1/5/9, 2/6/10, 3/7/11, and 4/8/12 of each factor to parcels. In
Studies 1 and 2, results are plotted and discussed in terms of the
three-parcel solutions, and any notable differences are discussed in
the text. In Study 3, both three- and four-parcel results are plotted.

The test models shown in Figure 1 were fit to each item-level,
parcel-level, and scale-level covariance matrix, using the R pack-
age lavaan (Rosseel, 2012). Note that even when no misspecifi-
cation is introduced, the scale model is still misspecified: Because
the scale model assumes that X, M, and Y are measured without
error (i.e., there is no measurement error in the model), both the
X ¡ M path and the M ¡ Y path will be attenuated. As a further
result of this attenuation, the indirect X ¡ M ¡ Y path is unable
to account for the covariance between X and Y, so the model does
not fit. (For a fuller explanation of the consequences of modeling
latent variables using scales, see Cole & Preacher, 2014). Thus,
bias, fit, and power in the scale models will reflect a combination
of this baseline misspecification plus whatever is due to the addi-
tional imposed misspecification. In contrast, the item- and parcel-
level latent variable models shown in Figure 1 are correctly spec-
ified when no further misspecification is imposed.

Outcomes

Bias. Structural parameter accuracy was assessed by examin-
ing the value of the indirect effect of X on Y; that is, the product
of the X ¡ M coefficient and the M ¡ Y coefficient. In keeping
with mediation model terminology, I call this indirect path ab. The
population ab was always .16 for every condition except Model
3A, where the M ¡ Y path was reversed, resulting in a population
indirect effect of 0. Deviation from .16 by .01 in either direction
corresponds to 6.25% relative bias, RB � (ab �.16)/.16. Relative

3 Misspecification resulting in a RMSEA of .02 may seem inconsequen-
tial, but it is nearly impossible to stipulate local misspecifications (e.g., a
pair of cross-loadings) that lead to bigger misspecifications without im-
posing implausibly high factor loadings or structural coefficients (see
Savalei, 2012). Results of the present set of studies reveal that even this
small overall degree of misspecification typically leads to consequential
bias. Of course, when more extreme misspecification is present, bias and
power may be expected to be higher across the board; however, the relative
performance of the item, parcel, and scale models is unlikely to be affected.
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bias cannot be computed for Model 3A as that would require
dividing by 0. Raw ab values are presented in figures, and relative
bias is discussed in-text.

Power. Power to detect model misspecification using the chi-
square test of exact fit is a function of the degree of model
misspecification (i.e., the minimum of the maximum likelihood fit
function, F̂ML) and the sample size. Thus, F̂ML obtained from a
misspecified model fit to population data can be used to obtain
power for any arbitrary sample size, N (Saris & Satorra, 1993;
Satorra & Saris, 1985). The noncentrality parameter of the non-
central chi-square distribution, �, is given by N � F̂ML (Satorra &
Saris, 1985). Power corresponds to the proportion of the noncen-
tral chi-square distribution that falls beyond the critical value
for the null hypothesis that the model is correctly specified,
P��2�df, �� � c.05�, where c.05 is the critical value for � � .05, and
df is the model degrees of freedom.

Fit indices. Three population fit indices are presented as a
continuous function of each model misspecification (e.g., as a
function of a cross-loading strength). First, the RMSEA captures
the degree of discrepancy between the population covariance ma-
trix and the model-reproduced covariance matrix, per degrees of
freedom (Browne & Cudeck, 1993). The population RMSEA is

given by RMSEA � �F̂ML ⁄df (Steiger, 1990; Steiger & Lind,
1980), of which the sample RMSEA is an unbiased and consistent
estimator (Browne & Cudeck, 1993; McDonald, 1989).

Power of the chi-square test of exact fit is equivalent to a test of
the null hypothesis that population RMSEA � 0. Power to detect
other population RMSEA values (e.g., to test the close-fit hypoth-
esis; MacCallum, Browne, & Sugawara, 1996) is not presented,
but can be extrapolated from the patterns shown in the power
curves for each model: Each power curve becomes progressively
flatter as the null hypothesis value of RMSEA increases. When the
criterion RMSEA value is larger than the population RMSEA for
the fitted model, the curve for that model converges upon 0, rather
than 1.

Second, the population standardized root mean square residual
(SRMR) is presented for each fitted model. SRMR is the average
standardized residual:

SRMR ��2 �
i�1

p
�

j�1

i �(sij � 	̂ij) ⁄ (siisjj)
1
2�2

⁄ p(p � 1),

where s is the sample covariance matrix (in the present study, the
population covariance matrix), 	̂ is the fitted (model-implied)
covariance matrix, and p is the number of observed variables
(Bentler, 2006).

Finally, Bentler (1990) described a population comparative fit
coefficient, 	 � 1 � �fitted/�null, where �fitted is the noncentrality
parameter for the fitted model, and �null is the noncentrality
parameter for the null model. In the null model, the variances of all
variables are freely estimated, and all covariances are constrained
to 0. The comparative fit index (CFI; Bentler, 1990), normed fit
index (NFI; Bentler & Bonett, 1980), and incremental fit index
(IFI; Bollen, 1989), are all consistent estimators of this population
coefficient. I refer to this fit index as “population CFI,” but it can
equally be thought of as population NFI or IFI.

Study 1: Misspecification in the Single-Factor
Measurement Model

Figure 2 shows the two population models considered in Study
1. In Model 1A, the latent construct X is represented by two
correlated factors, one with eight indicators (X1) and one with four
(X2). That is, what the researcher has conceptualized as a unidi-
mensional construct (e.g., aggression) actually encompasses two
correlated factors (e.g., proactive and reactive aggression; Poulin
& Boivin, 2000). The “true” effect of X ¡ M is conceptualized as
the total effect of X1 and X2 on M. Isolated parcels were formed
by combining the four indicators of X2 into a single parcel, and the
eight indicators of X1 into two parcels. Distributed parcels were
formed by distributing the four indicators of X2 across three

Figure 1. Test models for item data (top), parcel data (middle), and scale data (bottom).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

5POPULATION PARCELS



parcels, in combination with the eight indicators of X1. In this
misspecified model, what is modeled as a single common factor
(X) is actually composed of two correlated sources of variance
(X1 and X2). By allocating all indicators of X2 to a single
parcel, the isolated parceling strategy will relegate unique X2
variance to that parcel’s residual, producing a common factor
that represents a mix of X1 variance and the variance shared
among X1 and X2. Distributed parceling, in contrast, will pro-
duce a common factor that contains unique variance from both
X1 and X2.

Model parameters were chosen such that the proportion of
variance in the latent mediator, M, accounted for by X1 and X2
together was .16. Within this model, two continuously varying
effects were examined: First, the correlation between X1 and X2
was varied from 0 to 1 in increments of .01. In this manipulation,
the regression coefficients of X1 ¡ M and X2 ¡ M were equal to
each other, and their value varied simultaneously with the (X1, X2)
correlation to keep the total X ¡ M effect constant. Second, the
proportion of the X ¡ M effect due to X1 versus X2 was varied
from 0 (i.e., the entire effect is due to X2) to 1 (i.e., the entire effect
is due to X1). In this second manipulation, the (X1, X2) correlation
was held constant at .4, and the total X ¡ M effect was again held
constant.

In Model 1B, a secondary method factor accounts for additional
shared variance among four of the 12 indicators of Factor X.
Isolated parcels are formed by combining these four indicators
with method variance into a single parcel; distributed parcels
distributed these four indicators across three parcels. Because the
method factor is unrelated to other variables in the model, isolated
parceling is expected to eliminate the misspecification by remov-
ing method variance from the structural model. Distributed par-
celing, in contrast, should bring the method variance into the
common factor, and thus introduce bias into the structural model
(Hall et al., 1999).

Results: Model 1A

Figure 3 (top left) shows the model-estimated ab for the
models based on items, isolated and distributed parcels, and
scales as a function of the correlation between X1 and X2. The
solid gray line at ab � .16 indicates the population parameter
value when the correct population model is fit. When X1 and X2
are perfectly correlated, there is no misspecification (i.e., it is
correct to model them as a single factor); the misspecification
becomes more severe as the correlation decreases. At almost all
values of this correlation, bias in ab is most severe in scale data,
similar for items and isolated parcels, and benign in distributed
parcels. For example, when cor(X1, X2) � .4, the ab estimates
were .097 for scales (�40% bias), .142 for isolated parcels
(�11% bias), .149 for items (�7% bias), and .157 for distrib-
uted parcels (�2% bias).

Figure 3 (top right) shows power curves for detecting the model
misspecification for each parceling strategy when cor(X1, X2) � .4
as a function of N. Items have the highest power to detect the
misspecification, attaining 80% power at N � 400. Isolated parcels
have considerably less power, attaining 80% power at N � 1,081.
Scales have substantially less power, reaching 80% power only at
N � 10,976. Distributed parcels have essentially no power, reach-
ing only 27% power by N � 10,000.

To understand how bias and misfit arises, consider the source of
misspecification for each model. For items, there are two subsets
of indicators that are more strongly related to each other than to the
others, so a single factor cannot adequately account for their
covariances. Because the measurement model is incorrect, the
model cannot account for relations between X indicators and M
indicators, leading to model misfit and underestimation of the X ¡

M coefficient.
With isolated parcels, one parcel represents X2 and two parcels

represent X1. Because all variance unique to X2 is contained within

Figure 2. Population Model 1A (upper) and 1B (lower). Isolated parcels combine the four indicators of X2
(Model 1A) or the four indicators that load on the method factor (Model 1B) into a single parcel. Distributed
parcels allocate these four items to three different parcels. All factor loadings are .5. All manifest and latent
variables have a total variance of 1. Asterisks denote population values that are varied continuously.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

6 RHEMTULLA



a single parcel, X2 variance is relegated to residual variance of that
parcel. The unique relation between X2 and M is not captured in
the model, leading to both bias (X ¡ M is underestimated) and
misfit (covariance between the parcel representing X2 and indica-
tors of M and Y are not accounted for by the model).

With distributed parcels, all three parceled indicators of X rep-
resent both X1 and X2. As such, the X construct represents all
shared variance. The small amount of model misfit is caused by a
slight imbalance in the parcels—one parcel contained two X2
items and the others contained just one. When four distributed
parcels are created, each containing one X2 item, the resulting
model fit is perfect. However, even though four distributed parcels
results in perfect fit, the slight bias in ab observed with three
distributed parcels remains (the degree of bias is almost identical
with three or four distributed parcels). This bias occurs because X2
variance is underrepresented in each parcel compared with X1
variance: A parcel containing two X1 indicators and one X1
indicator contains a ratio of 4:1 X1:X2 variance.

Finally, as mentioned earlier, bias in the scale model has two
additive sources: attenuation of the ab path due to measurement
error, plus bias due to the additional measurement model misspeci-
fication. Bias due to attenuation can be seen at the far right of the

top left plot of Figure 3: When cor(X1, X2) � 1, every latent
variable method produces accurate estimates, but the manifest
variable approach based on scales results in an underestimate
(ab � .102; �36% bias). As cor(X1, X2) decreases, ab decreases
further. Misfit in the scale model arises because the underestimated
ab does not fully reproduce the covariance between the X and Y
scales, and the more extreme the bias, the worse the misfit.

The bottom row of Figure 3 shows the population fit indices as
a function of cor(X1, X2). SRMR and RMSEA indicate worse fit
for isolated parcels than items. Thus, SRMR and RMSEA appear
to be more sensitive to model misspecification in parceled models,
even when these parcels result in less bias than items. In contrast,
the population CFI is most indicative of item misfit. Distributed
parcels produce close to perfect fit by every metric.

Figure 4 (left) shows the model-estimated ab as a function of the
proportion of the X ¡ M effect due to X1. The solid gray line at
ab � .16 indicates the population parameter value when the correct
population model is fit. Bias in ab is always most severe in scale
data. Items, isolated parcels, and distributed parcels all display a
pattern of bias that decreases as more of the effect is due to X1, up
to a point of maximum accuracy that differs across the three ways
of modeling the latent variable. Isolated parcels result in the most

Figure 3. Model 1A results when X1 ¡ M and X2 ¡M effects are equal. Top left: Estimated values of ab for
the latent mediator (M) as a function of the population covariance between the latent generating factors X1 and
X2 (x-axis) and parceling strategy (separate lines). The solid gray line at ab � .16 indicates the population value.
Top right: Power to detect model misspecification by sample size (x-axis) and parceling strategy (separate lines)
when cor(X1, X2) � .4. Bottom: Population fit indices as a function of the population correlation between the
latent generating factors X1 and X2 (x-axis) and parceling strategy (separate lines).
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bias, especially when most of the effect is due to X2, distributed
parcels result in the least bias until about 65% of the effect is due
to X1, and the item model estimates are in between. Though the
bias of the three models is not very different, power to detect the
misspecification differs dramatically across models. The right
panel of Figure 4 displays power when N � 400 as a function of
the proportion of the X ¡ M effect due to X1. When items are
modeled, power is consistently high, despite decreasing bias.
When isolated parcels are modeled, power decreases in line with
the decreasing bias, until, when the entire effect is due to X1, there
is zero bias in ab and the model has perfect fit. When distributed
parcels are modeled, there is virtually no power at any point to
detect the misspecification.

Further analytical explorations of these effects revealed that bias
can be fully accounted for by three interacting factors: (a) cor(X1,
X2)—all methods become increasingly accurate as this correlation
increases, as seen in Figure 3; (b) the proportion of the variance in
M due to X1 relative to that due to X2—when these effects are
balanced (as in Figure 3, and in Figure 4 when the x-axis value is
.5), distributed parcels result in little to no bias, and items and
isolated parcels result in slightly more bias; and (c) the number of
indicators of X1 and X2—when there are an equal number of
indicators, the bias curves in Figure 4 are symmetrical around .5;
as there are more indicators of X1, these peaks shift to the right (as
seen in Figure 4). Given that these factors are not likely to be
known, it is difficult to recommend one best method. However, it
is clear from all conditions that (a) distributed parcels tend to result
in the least amount of bias but no power; (b) isolated parcels have
power that reflects the degree of bias in the structural parameter,
such that biased structural parameter estimates are more likely to
be detected; and (c) items have high power regardless of the degree
of structural parameter bias, such that even unbiased estimates are
likely to result in poor model fit.

These results are more promising than those reported by Ban-
dalos (2008), who studied a very similar model but measured bias
according to a different conception of the “true” effect. Here, I
consider the true X ¡ M parameter to be the combined effect of X1
and X2 on M (e.g., the total effect of proactive and reactive
aggression). This approach is appropriate if the researcher is in-
terested in assessing the combined effect of all facets of a complex

construct, as is likely given that he is modeling the construct as a
single factor. Bandalos considered the true X ¡ M parameter value
to be the single effect of X1 on M (e.g., the effect of proactive
aggression alone). Her approach is appropriate under the assump-
tion that the researcher is interested in assessing only one of the
facets of a complex construct. A third approach would be to
consider the true X ¡ M parameter to be the effect of a common
factor representing variance shared by X1 and X2 (e.g., the effect
of a higher order aggression factor on which proactive and reactive
aggression load). This approach would be appropriate under the
assumption that the researcher is interested in assessing the effect
of only the variance that is common to all facets of a complex
construct. This approach results in more extreme bias for all
methods, with very little difference between them, and similar
power to that presented in Figure 3.

Results: Model 1B

Figure 5 (top left) shows the model-estimated ab for the models
based on items, isolated and distributed parcels, and scales as a
function of (standardized) loadings on the secondary “method”
factor in Model 1B. When method loadings are 0, there is no
method variance and therefore no misspecification in any of the
latent variable models. As method loadings increase, the misspeci-
fication becomes more severe. Bias in the scale model is barely
affected by the strength of method loadings; all other models show
quite a small degree of bias until the method factor loadings reach
about .5 (i.e., the same strength as their loadings on the X factor).
Of the latent variable models, when method factor loadings are .5,
items produce the most bias (ab � .143; �10% bias), distributed
parcels produce small bias (ab � .152; –5% bias), and isolated
parcels produce no bias (consistent with Hall et al., 1999).

The top right panel of Figure 5 shows power curves for each
parceling strategy when the standardized method factor loadings
are .5. The item-level model is the only one with any discernable
power to detect the misspecification, reaching 80% power at N �
366. Scales require N � 10,361 to attain 80% power, distributed
parcels have only 15% power by N � 10,000, and isolated parcels
have perfect fit, so “power” in this case equals the Type I error
rate.

Figure 4. Model 1A results when X1 ¡ M and X2 ¡ M effects are unequal. Left: Estimated values of ab for
the latent mediator (M) as a function of the proportion of the X ¡ M effect due to X1 (x-axis) and parceling
strategy (separate lines). The solid gray line at ab � .16 indicates the population value. Right: Power to detect
model misspecification as a function of the proportion of the X ¡ M effect due to X1 (x-axis) and parceling
strategy (separate lines). The correlation between X1 and X2 is held constant at .4, and the proportion of the
variance in M due to both X1 and X2 is .16.
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The bottom row of Figure 5 shows fit indices as a function of the
method factor loadings. Of the latent variable models, the item
model displays the worst fit, whereas distributed parcels show
much better fit and isolated parcels have perfect fit. Misfit in the
scale model actually decreases slightly with the increasing mis-
specification, which counteracts the baseline misspecification of
the scale model.

The key to understanding these results is to recall that the
method factor is uncorrelated with M or Y. The isolated parceling
strategy is optimal because it allocates all shared method variance
to a single residual. The distributed parceling strategy, in contrast,
allows method variance to be shared across all indicators of X,
such that X represents both the intended construct and a particular
method. This strategy creates no misspecification within the X
model, because all distributed parcels share both sources of vari-
ance. Although the model based on distributed parcels fits well, the
relations between X and other variables in the structural model are
attenuated as a result of the extra method variance in X. The
present results differ from previous studies in which the method
factor affected multiple constructs (e.g., Bandalos, 2002, 2008;
Rogers & Schmitt, 2004): When the method factor is not unique to
one factor, isolated parceling will not prevent method variance

from entering the structural model.4 Study 2 considers more
closely the situation in which secondary variance is related to other
variables in the model.

It is worth noting the role of variability in factor loadings and
method factor loadings in this model. In this study, all factor
loadings and method factor loadings were held constant across
items. In the literature on common method variance, a distinction
is made between a set of items that are equally affected by method
variance (“noncongeneric” items) and those that are unequally
affected (“congeneric” items). This literature has found that the
effectiveness of techniques for dealing with common method
variance depends on this difference (e.g., Richardson, Simmering,

4 In a variant on Model 1B (not presented), method variance affected a
subset of indicators of both X and M, resulting in a spuriously high X ¡ M
path due to correlated method variance across the two factors. In this
situation, items, distributed parcels, and isolated parcels all resulted in
almost identical levels of upward bias in the structural coefficient, consis-
tent with previous research. Isolated parcels resulted in highest power,
followed closely by items, whereas distributed parcels had very low power
and scales had almost none. These findings are very similar to those
resulting from cross-loadings (Study 2)—another situation in which a
secondary source of variance is related to other variables in the model.

Figure 5. Model 1B results. Top left: Estimated values of ab as a function of the strength of standardized factor
loadings on the secondary method factor (x-axis) and parceling strategy (separate lines). The solid gray line at
ab � .16 is the population value. Top right: Power to detect model misspecification by sample size (x-axis) and
parceling strategy (separate lines) when method factor loadings are .5. Bottom: Population fit indices as a
function of the strength of standardized factor loadings on the secondary method factor (x-axis) and parceling
strategy (separate lines).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

9POPULATION PARCELS



& Sturman, 2009; Schaller, Patil, & Malhotra, 2015; Simmering,
Fuller, Richardson, Ocal, & Atinc, 2015). To investigate whether
unequal factor loadings or method factor loadings may affect the
differential performance of items and parcels, Models 1A and 1B
were replicated with varying factor loadings as well as varying
method loadings. The results were virtually indistinguishable from
those presented here: Neither absolute levels of bias and power nor
the relative performance of each method were affected when factor
loadings varied or when common method variance unequally
affected items.

Study 2: Misspecification in Multifactor
Measurement Model

Study 1 considered two model misspecifications that affect the
measurement model of a single factor. But measurement model
misspecifications can be more subtle: Even perfectly fitting single-
factor measurement models may be misspecified when they are
placed in a model with other constructs. Scales are typically
validated using single-factor confirmatory factor analysis (CFA)
models, and parceling strategies tend to be based on inter-item
properties within a scale. But indicators of a latent factor may be
related to another construct for reasons unrelated to the primary
construct they indicate. For example, the Masculinity scale of the
Bem Sex Role Inventory contains an item that queries self-
sufficiency (Bem, 1974). A researcher studying the relation be-
tween masculinity and work performance would likely find that
self-sufficiency is related to work performance over and above its
association with masculinity. When such cross-associations are
anticipated, what is the best way to deal with them?

I consider three population models. In Model 2A, one indicator
of Factor X has a positive cross-loading on Factor M, and one
indicator of Factor M has a positive cross-loading on Factor Y. In
population Model 2B, two indicators of Factors X and M have
positive cross-loadings on Factors M and Y, respectively (e.g., the
masculinity items “self-sufficiency” and “acts as a leader” may
both load positively on work performance over and above their
relation to masculinity). Population Model 2C is identical to 2B,
except one of the two cross-loadings on each factor is negative
(e.g., the masculinity item “forceful” may be negatively related to
work performance over and above the overall positive relation
between masculinity and work performance; see Figure 6). For
population Model 2A, there is no difference between isolated and
distributed parceling because there is only one indicator that con-
tains variance from another factor (i.e., the single offending item
must be parceled with a set of correctly specified items). For
Models 2B and 2C, I again compare isolated parceling (cross-
loading items parceled together) with distributed parceling (cross-
loading items parceled separately).

Results: Model 2A

Figure 7 (top left) shows the model-estimated ab for the item,
parcel, and scale models as a function of the population cross-
loading strength. When the cross-loading is 0, there is no mis-
specification in the item or parcel models. As the cross-loading
becomes stronger, ab estimates in all models increase to account
for the extra shared variance between M and an indicator of X. The
resulting bias is more severe for the item model than the parcel
model, especially as the cross-loading strength increases. When

Figure 6. Population Models 2A (upper), 2B (middle), and 2C (lower). All primary factor loadings are .5. All
manifest and latent variables have a total variance of 1. Asterisks denote population values that are varied
continuously.
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the cross-loading is .35, the item model ab is .229 (43% bias) and
the parcel model ab is .206 (29% bias). Parameter bias in the scale
model actually decreases as the misspecification becomes more
severe, as two sources of bias compensate for each other: Mea-
surement error creates negative bias, whereas the increasing cross-
loading creates positive bias.

It is interesting that bias for all models is much more severe than
in Study 1, despite approximately the same degree of misspecifi-
cation (noncentrality) in the item models. For example, the item
models in Study 1 showed 7% to 10% bias, compared with 43%
bias here. Figure 7 (top right) shows the power to detect the
misspecification when the cross-loading is .35. The item model has
the highest power to detect the misspecification, reaching 80%
power at N � 376, whereas the parcel model requires N � 707 to
reach 80% power. As in Study 1, misfit in the scale model stems
from attenuation due to measurement error rather than from the
imposed measurement model misspecification, and power to detect
this misspecification is very low.

The bottom row of Figure 7 displays fit index performance as a
function of the cross-loading strength. Whereas SRMR and CFI
are most sensitive to misspecification in the item model, RMSEA
is most sensitive to misspecification in the parcel model. The scale
model fits better by all three fit indices as the cross-loading

becomes more severe; this result corresponds to the decrease in
parameter bias for the scale model with increasing cross-loading
strength.

Results: Model 2B

Model 2B includes two indicators with positive cross-loadings,
making it possible to compare isolated parcels (parceling the two
misbehaving items together) with distributed parcels (parceling
them separately). Figure 8 (top) shows ab and power for the
models based on items, isolated and distributed parcels, and scales
as a function of the strength of cross-loadings (all four cross-
loadings were varied simultaneously). These results follow the
same trend as Model 2A, though the misspecification is greater,
resulting in more bias and higher power overall. Distributed par-
cels minimize the bias in ab: When the cross-loadings are .3, ab for
distributed parcels is .230 (44% bias), compared with .249 for
isolated parcels (55% bias), .266 for items (66% bias), and .15
for scales (�5% bias; as in Model 2A, low bias is a result of the
negative bias caused by measurement error being canceled out by
upward bias due to cross-loadings).

Power curves (Figure 8, top right) reveal an interesting diver-
gence: Although isolated parcels lead to less bias than items, they

Figure 7. Model 2A results. Top left: Estimated values of ab as a function of the strength of the cross-loadings
(x-axis) and parceling strategy (separate lines). The solid gray line at ab � .16 is the population value. Top right:
Power to detect model misspecification by sample size (x-axis) and parceling strategy (separate lines) when the
cross-loading value is .35. Bottom: Population fit indices as a function of the strength of the cross-loadings
(x-axis) and parceling strategy (separate lines).
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also lead to higher power to detect the misspecification. Distrib-
uted parcels, in contrast, have even less bias but substantially less
power. When the cross-loadings are .3, the model based on items
reaches 80% power at N � 327, isolated parcels require N � 248,
and distributed parcels require N � 1,041. These results are
consistent with Bandalos (2002, Study 2), in which an unmodeled
method factor affected two constructs. As with the cross-loadings
present here, that situation also results in indicators of two factors
sharing extra variance.

The bottom row of Figure 8 displays fit indices as a function of
cross-loading strength. CFI is, again, most sensitive to misfit in the
item model. RMSEA and SRMR, in contrast, are both most
sensitive to misfit in isolated parcels. RMSEA is also more sen-
sitive to misfit in distributed parcels than in items. As in Model
2A, misfit in the scale model corresponds to its parameter bias:
The two sources of bias perfectly cancel each other out when the
cross-loadings are .33, and at this value, fit is perfect according to
all three fit indices.

When four 3-item parcels are used, both isolated and distrib-
uted parcels result in slightly higher bias and higher power than
their three 4-item parcel counterpart models (results not
shown).

Results: Model 2C

In Model 2C, the valence of one cross-loading was flipped. The
effect of opposite loadings is to reduce the bias in ab, for items as
well as parcels, compared with two positive cross-loadings. Be-
cause one item has a positive cross-loading and another item has a
negative cross-loading of the same strength, when the two items
are combined into a parcel or scale, these variances fully cancel
each other out. As a result, the isolated parcels strategy results in
no bias, and scales result in only their baseline level of bias due to
measurement error, regardless of the cross-loading strength (see
Figure 9, top left). When the two items are entered into a mea-
surement model as separate indicators (whether as items or dis-
tributed parcels), the bias does not completely cancel out. The bias
pattern resulting from items and distributed parcels is the same as
it was when both cross-loadings were positive: Items result in most
bias (ab � .196; 23% bias) and distributed parcels result in about
half as much bias (ab � .174; 9% bias).

Interestingly, power to detect the misspecification is almost
equal for items (80% power at N � 285) and distributed parcels
(80% power at N � 324; see Figure 9, top right), despite much
greater bias in the item model. The bottom row of Figure 9 shows

Figure 8. Model 2B results. Top left: Estimated values of ab as a function of the strength of the cross-loadings
(x-axis) and parceling strategy (separate lines). The solid gray line at ab � .16 is the population value. Top right:
Power to detect model misspecification by sample size (x-axis) and parceling strategy (separate lines) when the
two cross-loading values are both .3. Bottom: Population fit indices as a function of the strength of the
cross-loadings (x-axis) and parceling strategy (separate lines).
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population fit indices as a function of cross-loading strength:
RMSEA and SRMR are most sensitive to the misspecification with
distributed parcels, and CFI is again most sensitive to misfit in the
item model.

Study 3: Structural Model Misspecification

Studies 1 and 2 showed that parceling can reduce parameter bias
and misfit due to misspecifications within or across measurement
models. Study 3 addresses the effect of parceling on structural
model misspecification. Methodologists have expressed concern
that structural model misspecification will be harder to detect with
parcels than items, simply because parceled models have a smaller
covariance matrix to fit. For example, Bandalos (2002) argued that

because the use of item parcels has the effect of reducing the number
of data points that must be fit, solutions based on parcels will not yield
as stringent a test of SEM models as would analyses based on the
individual items. (p. 80)

It is notable that structural model misspecification has never
been investigated in the context of parceling. After all, parcels are
most often employed when researchers have come to the point of
testing a theory in a full structural equation model, in an effort to

reduce the size of the model (Bandalos & Finney, 2001). At this
point in model testing, researchers are presumably most interested
in detecting problems with the theory, that is, the structural model.

I consider two population models (see Figure 10). In population
Model 3A, the regression coefficient from M ¡ Y is reversed, so
Y is actually a predictor of M, and X and Y are unrelated. Fitting the
mediation model to this matrix will result in erroneous model-
implied covariances between the indicators of X and those of Y (via
the indirect effect), where none exist. Whereas in previous models
the population structural regression coefficients were .4, in Model
3A, they were set to .65 to keep the degree of misfit for the item
model comparable across all models. Because the true M ¡ Y path
is 0, the true value of ab � .65 � 0 is also 0. In Model 3B, a direct
effect of X on Y has been added to the mediation model. Here, the
misspecification is due to the omission of the direct effect: Indi-
cators of M and Y covary more than the model can account for.

Results: Model 3A

When there is no measurement model misspecification, there is
no isolated/distributed distinction. Instead, figures present results
based on three 4-item parcels per factor (as in Studies 1 and 2) as
well as those based on four 3-item parcels per factor.

Figure 9. Model 2C results. Top left: Estimated values of ab as a function of the strength of the cross-loadings
(x-axis) and parceling strategy (separate lines). The solid gray line at ab � .16 is the population value. Top right:
Power to detect model misspecification by sample size (x-axis) and parceling strategy (separate lines) when the
cross-loading values are .3 and �.3. Bottom: Population fit indices as a function of the strength of the
cross-loadings (x-axis) and parceling strategy (separate lines).
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Figure 11 (top left) displays estimates of ab as a function of the
Y ¡ M path (
MY). When the value of the reversed path is 0, there is
no misspecification for items or parcels. As the path becomes stronger,
the bias increases. Parcels and items result in exactly the same bias. The

indirect effect estimated from scale data is smaller than that of the latent
variable models, because it is attenuated due to measurement error.

Figure 11 (top right) displays power to detect the structural
misspecification for scales, three and four parcels, and items.

Figure 10. Population Models 3A (upper) and 3B (lower). All factor loadings are .5. All manifest and latent
variables have a total variance of 1. Asterisks denote population values that are varied continuously.

Figure 11. Model 3A results. Top left: Estimated values of ab as a function of the strength of the regression
of Y on M (
MY; x-axis) and parceling strategy (separate lines). The population value of ab is 0. Top right: Power
to detect model misspecification by sample size (x-axis) and parceling strategy (separate lines) when 
MY � .65.
Bottom: Population fit indices as a function of the strength of 
MY (x-axis) and parceling strategy (separate lines).
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Scales and parcels result in considerably higher power to detect the
misspecification than items. Although items require N � 430 to
achieve 80% power, the same degree of power requires just N �
108 with parcels and N � 53 with scales. The reason for this
difference has to do with degrees of freedom. The degree of
misspecification is the same for items and three or four parcels—
the lavaan estimates of the noncentrality parameter for each of
these models differed by at most 0.6%—but the item model has
many more degrees of freedom (592) than the four-parcel model
(52 df), the three-parcel model (25 df), and the scale model (1 df).
Because the test statistic is compared with a chi-square distribution
that is centered on the model degrees of freedom, the item model
requires a higher degree of misfit to reject the model.

Differences in model fit are even more noticeable in the
RMSEA, which is adjusted for degrees of freedom (Figure 11,
bottom). For example, when 
MY � .65, the population RMSEA of
the item model is just .019, compared with .063 for four parcels
and .092 for three parcels. Similarly, the SRMR is twice as high for
three parcels as items (.080 for four parcels and .091 for three
parcels compared with .041 for items), and the population CFI is
substantially lower (.951 for four parcels and .941 for three parcels
compared with .966 for items). All fit indices reveal even greater
misspecification for scales, where the population SRMR � .110,

RMSEA � .384, and CFI � .810, due to the low df of the scale
model as well as the misspecification due to measurement error.

Results: Model 3B

Whereas the structural misspecification in Model 3A resulted in
the model accounting for more covariance between X and Y than
was actually present, the misspecification in Model 3B results in
the model accounting for less covariance between X and Y than is
present. The results, however, follow exactly the same pattern as
Model 3A.

Figure 12 (top left) displays estimates of ab as a function of the
missing direct X ¡ Y path. When the missing path is 0, the latent
variable models are not misspecified. All latent variable models
overestimate ab to the same degree as the strength of the missing
path increases. The scale model produces more accurate estimates
of the indirect effect as the direct effect increases because the
positive bias cancels out the negative bias due to measurement
error.

As with Model 3A, scales result in the highest power to detect
the structural misspecification, followed by three then four parcels,
followed by items. The bottom row of Figure 12 displays popula-

Figure 12. Model 3B results. Top left: Estimated values of ab as a function of the strength of the missing
regression path (
YX; x-axis) and parceling strategy (separate lines). The solid gray line at ab � .16 is the
population value. Top right: Power to detect model misspecification by sample size (x-axis) and parceling
strategy (separate lines) when 
YX � .55. Bottom: Population fit indices as a function of the strength of the
missing regression path (x-axis) and parceling strategy (separate lines).
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tion fit indices as a function of the missing direct path; these follow
the same pattern as in Model 3A.

Discussion

Most psychological constructs are inherently complex, so to
fully represent them requires heterogeneous items that do not
behave according to the psychometric ideal of unidimensionality
(Reise, Moore, & Haviland, 2010). If these items are modeled as
though they are unidimensional indicators of a single latent con-
struct, the measurement model will be misspecified and structural
parameter estimates will be biased. One way to deal with mea-
surement model misspecification is to model it explicitly via a
bifactor or higher order factor model, a modeled method factor, or
estimated cross-loadings or correlated residuals (Reise et al., 2010,
2013). These methods can clarify the multidimensional structure of
a set of items and thereby illuminate the nature of the latent
variable.

Parceling has been derided as a way to bury problems caused by
poor items (e.g., Marsh, Lüdtke, Nagengast, Morin, & Von Davier,
2013) because a misspecified item-level measurement model can
easily be transformed into a well-fitting parcel-level measurement
model. Detractors argue that parceling produces latent variables
that no longer represent what they were meant to represent, while
still appearing to have good fit. The present results confirm that
parceling can, in some situations, create good fit while preserving
bias. However, they also show that, once the measurement prop-
erties of a set of items is well understood, strategic parceling can
be used to create simple models with minimal bias in the structural
model.

The present studies have also revealed a novel benefit of par-
celing that has nothing to do with measurement model misspeci-
fication: Parcels result in far greater power to detect structural
model misspecifications compared with items. Thus, over and
above any benefits that parcels bring to the measurement model,
they may be worth using to achieve a stronger test of the structural
model.

The Effect of Parcels on Bias

In line with previous research, when misspecified item-level
models were parceled, structural parameter estimates often re-
mained biased. Surprisingly, though, in almost no condition did a
parceled model produce more bias in the structural coefficient than
the item model did. With the exception of Model 1A, in which
three 4-item isolated parcels resulted in slightly more bias than
items for medium values of cor(X1, X2), in every other model, both
isolated and distributed parcels produced smaller bias in the me-
diated X ¡ M ¡ Y path compared with items. This finding is
consistent with Bandalos (2002), which is the only previous study
that has directly compared parameter bias as a result of model
misspecification in items versus parcels.

In some situations, one parceling strategy was able to com-
pletely or almost completely eliminate bias. Study 1 considered
two scenarios in which items contain multiple sources of system-
atic variance. When it is desirable for both sources of variance to
be contained in the latent factor (e.g., when these were two facets
of the construct), then distributed parcels appropriately channel
both sources of variance into the latent factor, producing a latent

factor defined by both facets. When it is desirable for one source
of variance to be relegated to residual variance (e.g., when a subset
of items is affected by method variance), then isolated parcels
achieve this goal by allocating all method variance to a single
parcel, in which it ends up in that parcel’s residual variance rather
than in the factor. Thus, if the measurement properties of a set of
items are known, a researcher can allocate items to parcels in such
a way that factor-relevant variance is shared among parcels and
factor-irrelevant variance is not.

For example, a researcher studying the effect of perfectionism
on school achievement may not be interested in the underlying
six-dimensional structure of perfectionism (Frost, Marten, Lahart,
& Rosenblate, 1990). In creating parcels out of the Multidimen-
sional Perfectionism Scale (Frost et al., 1990), one strategy would
be to create isolated parcels that each reflect one facet of perfec-
tionism. The resulting latent construct would behave like a higher
order factor model, capturing only what is shared among the six
facets, but none of the unique aspects of each facet (Coffman &
MacCallum, 2005; Graham & Tatterson, 2000; Hagtvet & Nasser,
2004). In contrast, a distributed parcels strategy would allow the
latent factor to reflect all the reliable variance in the construct,
including unique and common aspects of each perfectionism di-
mension. Neither of these schemes is inherently better. Which one
is chosen depends on whether the researcher intends to construe
perfectionism as a higher order unidimensional construct (i.e., that
part of perfectionism that is independent of its facets) or as a
multidimensional construct.

Study 2 represents one of the first examinations of the effects of
parceling on cross-factor measurement misspecification. When a
cross-loading was present in the population, any parceling strategy
reduced its effect and thereby reduced bias in the structural coef-
ficient. Thus, one recommendation from this study is that any
parceling strategy may be beneficial to reducing the effect of
cross-factor measurement misspecification. When more is known
about the structure of the misspecification, however, it may be
possible to choose a parceling scheme that reduces the bias even
further. In the case of two cross-loadings of the same valence,
allocating these to separate parcels produces less bias. In the case
of two cross-loadings of opposite valence, allocating these to the
same parcel produces less bias. These results suggest that the
accuracy of structural parameter estimates can be maximized by
creating parcels based on a multifactor measurement model rather
than a series of single-factor models. The multifactor measurement
model may reveal substantial cross-loadings that can be taken into
account to minimize their effect on the structural model. In con-
trast, parceling schemes based on single-factor CFA models cannot
possibly account for cross-factor measurement model misspecifi-
cation.

Finally, Study 3 confirmed that when misfit in the item model is
entirely due to structural model misspecification, parceling does
not introduce additional bias.

These studies confirmed the well-known finding that manifest
variable models based on scales are susceptible to bias as a result
of measurement error. In the absence of other misspecification,
measurement error attenuated the mediated path in the scale model
by 36%. When other measurement model misspecifications are
present, their effects either compound or counteract this bias.
These results affirm recommendations by Cole and Preacher
(2014) and Coffman and MacCallum (2005) that latent variable
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models be used instead of scales (but whereas Cole & Preacher
recommended the full item-level model be used, Coffman &
MacCallum recommended parcels).

The Effect of Parcels on Power to
Detect Misspecification

Power to detect misfit by the chi-square test of exact fit depends
on the misspecification. This article examined seven misspecified
models, each with roughly equal power in the item-level model.
Study 1 revealed that within-factor misspecifications, including a
single factor fit to an underlying two-factor structure and a set of
items with shared method variance, result in substantially lower
power for parceled models than items. More optimistically for
parcels, Study 2 revealed that power to detect cross-loadings
ranges from somewhat lower for parcels, in the case of a single
cross-loading, to slightly higher for parcels, in the case of multiple
cross-loadings parceled together. Much more optimistically for
parcels, Study 3 revealed that power to detect structural model
misspecifications, including a misdirected path and a missing path,
is considerably higher for parcels than items. The behavior of four
parcels fell in between that of items and that of three parcels per
factor, but was much closer to three parcels.

A manifest variable model fit to scale-level composites had
virtually no power to detect a measurement model misspecifica-
tion, but very high power to detect structural misspecifications.
The finding that manifest variable models fit to scale data result in
substantially higher power to detect structural misspecification is
surprising based on current recommended practice. For example,
Cole and Preacher (2014) found that as unreliability in a scale
increases, power to detect model misspecification decreases sub-
stantially. They recommended that latent variable models be used
instead of scales, and that these models be based on as many items
as possible, on the basis of previous research suggesting that more
indicators lead to more stable SEM solutions (Marsh et al., 1998;
Mulaik, 2009). The present results suggest, however, that latent
variable modeling does not improve power to detect structural
model misspecification: In a given data set, using a latent variable
model instead of scales leads to severely decreased power to detect
the misspecification. Parcels provide a partial solution to this
problem—by reducing the size of the model, parcels increase
power to detect structural model misspecification compared with
items, though power is still lower than for scales. Thus, a better
recommendation, to maximize both accuracy and power, is to use
latent variable models based on a small number of parcels.

The Effect of Parcels on Model Fit Indices

It is common practice for the fit of any structural equation model
to be evaluated using not only the chi-square test of exact fit but
also any of a number of popular fit indices. I examined RMSEA,
SRMR, and Bentler’s comparative fit coefficient, which is consis-
tently estimated by CFI, NFI, and IFI. The results from these
investigations reveal optimal strategies for detecting misfit in
parceled models.

Population RMSEA is the square root of the estimated chi-
square noncentrality parameter (which is used to obtain the chi-
square test statistic) divided by the model degrees of freedom.
Given the same degree of misfit, a model with more degrees of

freedom will thus result in better fit. When the misspecification
was in the measurement model (Studies 1 and 2), the noncentrality
parameter was always substantially higher for the item model than
the parceled models, which typically led to higher power for the
item model. However, when these noncentrality parameters were
divided by the models’ respective degrees of freedom (592 df for
the item model vs. 25 df for the parceled model), the result was
frequently a higher RMSEA for one or both of the parceled
models. When the misspecification was in the structural model
(Study 3), the noncentrality parameters for item and parceled
models were almost identical, resulting in substantially higher
RMSEAs for the parceled models. These findings suggest that
RMSEA may be a particularly sensitive index for discovering
model misspecification in parceled models.

Similar to RMSEA, SRMR includes a type of parsimony cor-
rection because it indexes the average standardized residual over a
smaller covariance matrix for parcels than for items. SRMR also
showed promising performance for detecting misspecification in
parceled models, producing the highest SRMR for parcels in
almost all of the situations that RMSEA did. Of the two, RMSEA
showed slightly higher sensitivity to misfit in parceled models.

The population version of the CFI, NFI, and IFI always pro-
duced substantially worse fit for items than parcels under any
measurement model misspecification. Only under structural model
misspecification, when power was already much higher for par-
celed models, did this index show (slightly) worse fit for parcels
than items. These findings suggest that CFI, NFI, and IFI should
not be used to judge the fit of a parceled model.

No fit index was able to detect measurement model misspeci-
fication in the scale model. The scale-based RMSEA, SRMR, and
CFI were unaffected by the degree of measurement model mis-
specification—although in some situations these indices were
highest for scales, they did not display worse fit as the misspeci-
fication became worse; in fact, they often suggested better fit with
greater measurement model misspecification. In contrast, when the
misspecification was at the structural level, all indices displayed
substantially worse fit for scales than parcels or items.

Recommendations

Five recommendations can be distilled from the present set of
findings:

1. The full item-level measurement model (i.e., a CFA
model including all constructs) should be fit before de-
ciding whether and how to allocate items to parcels. Not
only is this is the most powerful way to detect measure-
ment model misspecification—it may be used to identify
sources of misfit (e.g., shared variance among items
within and across latent variables) that can be minimized
using parcels.

2. An ideal parceling scheme can be selected based on a
known item-level population model. As the item-level
population model is never known, a plausible basis on
which to allocate items to parcels is a strong under-
standing of the measurement properties of scale items
(e.g., based on item content, previous research, or
empirical tools designed for this purpose; Reise, Boni-
fay, & Haviland, 2013). Given this type of informa-
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tion, a parceling scheme can be chosen to achieve the
desired content of each latent variable. When indica-
tors are not unidimensional, isolated and distributed
parcels both serve to redefine the common factor:
Isolated parcels combine items that share unique vari-
ance, removing that variance from the latent factor and
relegating it to residual variance. Distributed parcels
allow all variance that is shared by any items to
become part of the latent factor. The decision to use
isolated or distributed parcels is likely to affect struc-
tural parameter estimates.

3. Any parceling scheme is likely (though not guaran-
teed) to reduce bias in structural parameters that is due
to measurement model misspecification. Moreover,
any parceling scheme will result in substantially
higher power to test the fit of a structural model
compared with items. As such, once the goal is to
estimate structural parameters and/or to test a theory
instantiated in a structural model, parceling is recom-
mended.

4. When there is misfit across factors, such as a single
cross-loading, any parceling scheme will substantially
reduce its effects. If more than one item cross-loads on
the same factor, allocating these to separate parcels
will minimize their effects; if multiple items have
cross-loadings on the same factor in opposite direc-
tions, allocating these to the same parcel can cancel
out the effects. The present study has not examined the
effects of parceling decisions based on observed sam-
ple misfit—for example, a cross-loading in a particular
sample that may or may not exist at the population
level.

5. To evaluate the fit of a parceled model, RMSEA and
SRMR are a better bet than CFI or the chi-square test.
Fit based on CFI and chi-square is virtually guaranteed
to improve after parceling, whether or not bias is
reduced. In contrast, RMSEA and SRMR may get
worse after parceling, even when bias is reduced. An
increase in RMSEA or SRMR after parceling does not
indicate that the item model is better than the parceled
model—it indicates that there is still misspecification
in the model that may be causing bias.

Limitations and Future Directions

The present studies did not consider precision of parameter
estimates under item, parcel, and scale models. Marsh et al. (1998)
reported that the variability of structural parameter estimates
across repeated samples is identical whether items or any number
of parcels are modeled. Ledgerwood and Shrout (2011) reported
that latent variable models produce higher variability in structural
parameter estimates than do scale models: Their estimated indirect
(mediation) path ranged from 70% more efficient (small effect
size, high scale reliability) to 270% more efficient (large effect
size, low scale reliability) than that estimated with a latent variable
model. These findings are confirmed by examining the asymptotic
standard errors of estimates in the present study (results not pre-

sented), which reveals that the variability of structural parameters
was identical for items and parcels, but much lower for scales (e.g.,
with no model misspecification, the indirect path coefficient esti-
mated with scales was 63% more efficient than the one estimated
with items or parcels). The higher precision in scale models
translates to higher power to detect nonzero structural coefficients
(e.g., by a Wald test), though this benefit must be weighed against
the loss of accuracy in scale models compared with latent variable
models (Ledgerwood & Shrout, 2011).

Although the asymptotic results suggest that parcel-based
parameter estimates are no less efficient than item-based esti-
mates, this equality may not hold up with sample data. Sterba
and MacCallum (2010) revealed that the use of parcels intro-
duces allocation variability, that is, variability across different
allocations of items to parcels within a single sample data set.
Allocation variability affects parameter estimates as well as fit
indices, even when items are interchangeable in the population
(Sterba, 2011; Sterba & MacCallum, 2010). Further research is
needed to clarify to what extent the advantages of parceling
may be outweighed by lower precision due to the latent variable
model (compared with scales) and allocation variability (com-
pared with items).

The study of population performance leads to precise recom-
mendations of how and when to parcel based on exact knowledge
of population conditions. When population conditions are un-
known, it would be desirable to have empirical parceling schemes
that reliably produce isolated and distributed parcels. The most
commonly applied empirical approaches are meant to produce
distributed parcels. For example, the item-to-construct balance
approach (Little et al., 2002; also known as the factorial algorithm
[Rogers & Schmitt, 2004]), combines items with high factor load-
ings with those with low loadings to create a set of maximally
similar parcels. As items with high factor loadings are most likely
to be unidimensional indicators of the latent factor, and those with
low loadings are more likely to be affected by a secondary source
of variance, combining items with high and low loadings is likely
to create distributed parcels.

Producing isolated parcels may prove more difficult in practice.
Rogers and Schmitt (2004) compared four empirical parceling
schemes, of which two were meant to create isolated parcels and
two were meant to create distributed parcels. They found that all
four strategies resulted in largely indistinguishable results that
resembled distributed parcels. However, their population model
was a bifactor model with four secondary factors, out of which
three parcels were formed. Even if an empirical strategy could
have identified four unique sets of variance, these would have been
forced into three quasi-isolated parcels. More research is clearly
needed. Still, distributed parcels may be much easier to achieve in
practice, if only because there are many more item-to-parcel allo-
cations that will produce distributed parcels than isolated parcels.
Although isolated parcels are ideal in certain situations, the present
results suggest that distributed parcels tend to lead to acceptable
levels of bias and power.

The present results suggest that parcels can and should be
selected based on item properties revealed via multifactor CFAs. It
is not clear, however, to what extent this recommendation should
be followed on the basis of small sample data. For example, if
model modification indices based on a multifactor item-level CFA
suggest adding two cross-loadings, allocating items to parcels
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based on this sample information may be a valid strategy, or, if
these cross-loadings are the spurious result of sample fluctua-
tions, it may introduce new bias. Research based on simulated
sample data will be required to evaluate the reliability of this
approach.

Conclusion

Although there is a great deal of debate in the methodological
literature about the dangers of parcels, the present results suggest
that researchers may benefit from using them. In most cases, bias
in structural coefficients is reduced compared with item models.
Though power to detect measurement model misspecification is
frequently diminished, RMSEA and SRMR are more sensitive to
this misspecification in parceled models. Most crucially, parceling
vastly improves power to detect misspecification in the structural
model. The goal of most research using SEM is to test the struc-
tural relations among constructs. Parcels help make that goal more
attainable.
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